December  2010, 2(4): 397-440. doi: 10.3934/jgm.2010.2.397

Geometric Jacobian linearization and LQR theory

1. 

Department of Mathematics and Statistics, Queen's University, Kingston, ON K7L 3N6, Canada, Canada

Received  April 2010 Revised  December 2010 Published  January 2011

The procedure of linearizing a control-affine system along a non-trivial reference trajectory is studied from a differential geometric perspective. A coordinate-invariant setting for linearization is presented. With the linearization in hand, the controllability of the geometric linearization is characterized using an alternative version of the usual controllability test for time-varying linear systems. The various types of stability are defined using a metric on the fibers along the reference trajectory and Lyapunov's second method is recast for linear vector fields on tangent bundles. With the necessary background stated in a geometric framework, linear quadratic regulator theory is understood from the perspective of the Maximum Principle. Finally, the resulting feedback from solving the infinite time optimal control problem is shown to uniformly asymptotically stabilize the linearization using Lyapunov's second method.
Citation: Andrew D. Lewis, David R. Tyner. Geometric Jacobian linearization and LQR theory. Journal of Geometric Mechanics, 2010, 2 (4) : 397-440. doi: 10.3934/jgm.2010.2.397
References:
[1]

R. Abraham, J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis, and Applications,'' 2nd edition,, Number 75 in Applied Mathematical Sciences, (1988).   Google Scholar

[2]

C. D. Aliprantis and K. C. Border, "Infinite-dimensional Analysis,'' 2nd edition,, Springer-Verlag, (1999).   Google Scholar

[3]

M. Athans and P. L. Falb, "Optimal Control. An Introduction to the Theory and its Applications,'', McGraw-Hill, (1966).   Google Scholar

[4]

R. M. Bianchini and G. Stefani, Controllability along a trajectory: A variational approach,, SIAM Journal on Control and Optimization, 31 (1993), 900.  doi: 10.1137/0331039.  Google Scholar

[5]

R. W. Brockett, "Finite Dimensional Linear Systems,'', John Wiley and Sons, (1970).   Google Scholar

[6]

R. M. Hirschorn and A. D. Lewis, Geometric local controllability: Second-order conditions,, Preprint, (2002).   Google Scholar

[7]

M. Ikeda, H. Maeda and S. Kodama, Stabilization of linear systems,, Journal of the Society of Industrial and Applied Mathematics, 10 (1972), 716.   Google Scholar

[8]

R. E. Kalman, Contributions to the theory of optimal control,, Boletín de la Sociedad Matemática Mexicana. Segunda Serie, 5 (1960), 102.   Google Scholar

[9]

E. B. Lee and L. Markus, "Foundations of Optimal Control Theory,'', John Wiley and Sons, (1967).   Google Scholar

[10]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "Matematicheskaya Teoriya Optimal' nykh Protsessov,'', Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, (1961).   Google Scholar

[11]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Classics of Soviet Mathematics. Gordon & Breach Science Publishers, (1986).   Google Scholar

[12]

E. D. Sontag, "Mathematical Control Theory: Deterministic Finite Dimensional Systems,'' 2nd edition,, Number 6 in Texts in Applied Mathematics, (1998).   Google Scholar

[13]

H. J. Sussmann, An introduction to the coordinate-free maximum principle,, in, (1997), 463.   Google Scholar

[14]

D. R. Tyner, "Geometric Jacobian Linearisation,'', PhD thesis, (2007).   Google Scholar

[15]

M. Vidyasagar, "Nonlinear Systems Analysis,'' 2nd edition,, Number 42 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, (2002).   Google Scholar

[16]

K. Yano and S. Ishihara, "Tangent and Cotangent Bundles,'', Number 16 in Pure and Applied Mathematics. Dekker Marcel Dekker, (1973).   Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis, and Applications,'' 2nd edition,, Number 75 in Applied Mathematical Sciences, (1988).   Google Scholar

[2]

C. D. Aliprantis and K. C. Border, "Infinite-dimensional Analysis,'' 2nd edition,, Springer-Verlag, (1999).   Google Scholar

[3]

M. Athans and P. L. Falb, "Optimal Control. An Introduction to the Theory and its Applications,'', McGraw-Hill, (1966).   Google Scholar

[4]

R. M. Bianchini and G. Stefani, Controllability along a trajectory: A variational approach,, SIAM Journal on Control and Optimization, 31 (1993), 900.  doi: 10.1137/0331039.  Google Scholar

[5]

R. W. Brockett, "Finite Dimensional Linear Systems,'', John Wiley and Sons, (1970).   Google Scholar

[6]

R. M. Hirschorn and A. D. Lewis, Geometric local controllability: Second-order conditions,, Preprint, (2002).   Google Scholar

[7]

M. Ikeda, H. Maeda and S. Kodama, Stabilization of linear systems,, Journal of the Society of Industrial and Applied Mathematics, 10 (1972), 716.   Google Scholar

[8]

R. E. Kalman, Contributions to the theory of optimal control,, Boletín de la Sociedad Matemática Mexicana. Segunda Serie, 5 (1960), 102.   Google Scholar

[9]

E. B. Lee and L. Markus, "Foundations of Optimal Control Theory,'', John Wiley and Sons, (1967).   Google Scholar

[10]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "Matematicheskaya Teoriya Optimal' nykh Protsessov,'', Gosudarstvennoe izdatelstvo fiziko-matematicheskoi literatury, (1961).   Google Scholar

[11]

L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, "The Mathematical Theory of Optimal Processes,'', Classics of Soviet Mathematics. Gordon & Breach Science Publishers, (1986).   Google Scholar

[12]

E. D. Sontag, "Mathematical Control Theory: Deterministic Finite Dimensional Systems,'' 2nd edition,, Number 6 in Texts in Applied Mathematics, (1998).   Google Scholar

[13]

H. J. Sussmann, An introduction to the coordinate-free maximum principle,, in, (1997), 463.   Google Scholar

[14]

D. R. Tyner, "Geometric Jacobian Linearisation,'', PhD thesis, (2007).   Google Scholar

[15]

M. Vidyasagar, "Nonlinear Systems Analysis,'' 2nd edition,, Number 42 in Classics in Applied Mathematics. Society for Industrial and Applied Mathematics, (2002).   Google Scholar

[16]

K. Yano and S. Ishihara, "Tangent and Cotangent Bundles,'', Number 16 in Pure and Applied Mathematics. Dekker Marcel Dekker, (1973).   Google Scholar

[1]

Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764

[2]

Jiongmin Yong. A deterministic linear quadratic time-inconsistent optimal control problem. Mathematical Control & Related Fields, 2011, 1 (1) : 83-118. doi: 10.3934/mcrf.2011.1.83

[3]

Rohit Gupta, Farhad Jafari, Robert J. Kipka, Boris S. Mordukhovich. Linear openness and feedback stabilization of nonlinear control systems. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1103-1119. doi: 10.3934/dcdss.2018063

[4]

Eduardo Cerpa. Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation. Communications on Pure & Applied Analysis, 2010, 9 (1) : 91-102. doi: 10.3934/cpaa.2010.9.91

[5]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

[6]

Georg Vossen, Stefan Volkwein. Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems. Numerical Algebra, Control & Optimization, 2012, 2 (3) : 465-485. doi: 10.3934/naco.2012.2.465

[7]

Tijana Levajković, Hermann Mena, Amjad Tuffaha. The stochastic linear quadratic optimal control problem in Hilbert spaces: A polynomial chaos approach. Evolution Equations & Control Theory, 2016, 5 (1) : 105-134. doi: 10.3934/eect.2016.5.105

[8]

Hanxiao Wang, Jingrui Sun, Jiongmin Yong. Weak closed-loop solvability of stochastic linear-quadratic optimal control problems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2785-2805. doi: 10.3934/dcds.2019117

[9]

Shigeaki Koike, Hiroaki Morimoto, Shigeru Sakaguchi. A linear-quadratic control problem with discretionary stopping. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 261-277. doi: 10.3934/dcdsb.2007.8.261

[10]

Russell Johnson, Carmen Núñez. Remarks on linear-quadratic dissipative control systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (3) : 889-914. doi: 10.3934/dcdsb.2015.20.889

[11]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[12]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[13]

Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275

[14]

Roberta Fabbri, Russell Johnson, Sylvia Novo, Carmen Núñez. On linear-quadratic dissipative control processes with time-varying coefficients. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 193-210. doi: 10.3934/dcds.2013.33.193

[15]

Shaolin Ji, Xiaole Xue. A stochastic maximum principle for linear quadratic problem with nonconvex control domain. Mathematical Control & Related Fields, 2019, 9 (3) : 495-507. doi: 10.3934/mcrf.2019022

[16]

K.H. Wong, C. Myburgh, L. Omari. A gradient flow approach for computing jump linear quadratic optimal feedback gains. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 803-808. doi: 10.3934/dcds.2000.6.803

[17]

Jin Feng He, Wei Xu, Zhi Guo Feng, Xinsong Yang. On the global optimal solution for linear quadratic problems of switched system. Journal of Industrial & Management Optimization, 2019, 15 (2) : 817-832. doi: 10.3934/jimo.2018072

[18]

Larbi Berrahmoune. Constrained controllability for lumped linear systems. Evolution Equations & Control Theory, 2015, 4 (2) : 159-175. doi: 10.3934/eect.2015.4.159

[19]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[20]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]