June  2011, 3(2): 197-223. doi: 10.3934/jgm.2011.3.197

Embedded geodesic problems and optimal control for matrix Lie groups

1. 

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States

2. 

Department of Electrical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States

3. 

Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States

4. 

Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, United States

Received  July 2009 Revised  June 2011 Published  July 2011

This paper is devoted to a detailed analysis of the geodesic problem on matrix Lie groups, with left invariant metric, by examining representations of embeddings of geodesic flows in suitable vector spaces. We show how these representations generate extremals for optimal control problems. In particular we discuss in detail the symmetric representation of the so-called $n$-dimensional rigid body equation and its relation to the more classical Euler description. We detail invariant manifolds of these flows on which we are able to define a strict notion of equivalence between representations, and identify naturally induced symplectic structures.
Citation: Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist, Amit K. Sanyal. Embedded geodesic problems and optimal control for matrix Lie groups. Journal of Geometric Mechanics, 2011, 3 (2) : 197-223. doi: 10.3934/jgm.2011.3.197
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1978.

[2]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," 2nd edition, Graduate Texts in Mathematics, 60, Springer Verlag, New York, 1989.

[3]

A. M. Bloch, J. Ballieul, P. E. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control," number 24 in "Interdisciplinary Texts in Mathematics," Springer Verlag, New York, 2003.

[4]

A. M. Bloch, P. E. Crouch, D. D. Holm and J. E. Marsden, An optimal control formulation for inviscid incompressible ideal fluid flow, In "Proc. IEEE Conf. on Decision and Control," Sydney, Australia, (December 2000), 1273-1279, arXiv:nlin/0103042.

[5]

A. M. Bloch, P. E. Crouch, J. E. Marsden and T. S. Ratiu, The symmetric representation of the rigid body equations and their discretization, Nonlinearity, 15 (2002), 1309-1341. doi: 10.1088/0951-7715/15/4/316.

[6]

A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K. Sanyal, Optimal control and geodesics on quadratic matrix Lie groups, Foundations of Computational Mathematics, 8 (2008), 469-500. doi: 10.1007/s10208-008-9025-1.

[7]

A. M. Bloch, P. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds, Nonlinearity, 19 (2006), 2247-2276. doi: 10.1088/0951-7715/19/10/002.

[8]

Y. N. Federov and V. V. Kozlov, Various aspects of n-dimensional rigid body dynamics, in "Dynamical Systems in Classical Mechanics," American Mathematical Society Translations, 168, Amer. Math. Soc., Providence, RI, (1995), 141-171.

[9]

F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., (). 

[10]

I. M. Gelfand and S. V. Fomin, "Calculus of Variations," Prentice-Hall, Inc., Englewood Cliffs, NJ, (reprinted by Dover, 2000), 1963.

[11]

D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., (). 

[12]

D. E. Kirk, "Optimal Control Theory: An Introduction," Dover Publications, New York, 2004.

[13]

S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body, Functional Analysis and Its Applications, 10 (1976), 328-329. doi: 10.1007/BF01076037.

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition, Texts in Applied Mathematics, 17, Springer Verlag, New York, 1999.

[15]

A. S. Mischenko and A. T. Fomenko, On the integration of the Euler equations on semisimple Lie algebras, Sov. Math. Dokl., 17 (1976), 1591-1593.

[16]

T. S. Ratiu, The motion of the free n-dimensional rigid body, Indiana University Mathematics Journal, 29 (1980), 609-629. doi: 10.1512/iumj.1980.29.29046.

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1978.

[2]

V. I. Arnol'd, "Mathematical Methods of Classical Mechanics," 2nd edition, Graduate Texts in Mathematics, 60, Springer Verlag, New York, 1989.

[3]

A. M. Bloch, J. Ballieul, P. E. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control," number 24 in "Interdisciplinary Texts in Mathematics," Springer Verlag, New York, 2003.

[4]

A. M. Bloch, P. E. Crouch, D. D. Holm and J. E. Marsden, An optimal control formulation for inviscid incompressible ideal fluid flow, In "Proc. IEEE Conf. on Decision and Control," Sydney, Australia, (December 2000), 1273-1279, arXiv:nlin/0103042.

[5]

A. M. Bloch, P. E. Crouch, J. E. Marsden and T. S. Ratiu, The symmetric representation of the rigid body equations and their discretization, Nonlinearity, 15 (2002), 1309-1341. doi: 10.1088/0951-7715/15/4/316.

[6]

A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K. Sanyal, Optimal control and geodesics on quadratic matrix Lie groups, Foundations of Computational Mathematics, 8 (2008), 469-500. doi: 10.1007/s10208-008-9025-1.

[7]

A. M. Bloch, P. E. Crouch and A. K. Sanyal, A variational problem on Stiefel manifolds, Nonlinearity, 19 (2006), 2247-2276. doi: 10.1088/0951-7715/19/10/002.

[8]

Y. N. Federov and V. V. Kozlov, Various aspects of n-dimensional rigid body dynamics, in "Dynamical Systems in Classical Mechanics," American Mathematical Society Translations, 168, Amer. Math. Soc., Providence, RI, (1995), 141-171.

[9]

F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., (). 

[10]

I. M. Gelfand and S. V. Fomin, "Calculus of Variations," Prentice-Hall, Inc., Englewood Cliffs, NJ, (reprinted by Dover, 2000), 1963.

[11]

D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., (). 

[12]

D. E. Kirk, "Optimal Control Theory: An Introduction," Dover Publications, New York, 2004.

[13]

S. V. Manakov, Note on the integration of Euler's equations of the dynamics of an n-dimensional rigid body, Functional Analysis and Its Applications, 10 (1976), 328-329. doi: 10.1007/BF01076037.

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition, Texts in Applied Mathematics, 17, Springer Verlag, New York, 1999.

[15]

A. S. Mischenko and A. T. Fomenko, On the integration of the Euler equations on semisimple Lie algebras, Sov. Math. Dokl., 17 (1976), 1591-1593.

[16]

T. S. Ratiu, The motion of the free n-dimensional rigid body, Indiana University Mathematics Journal, 29 (1980), 609-629. doi: 10.1512/iumj.1980.29.29046.

[1]

François Gay-Balmaz, Tudor S. Ratiu. Clebsch optimal control formulation in mechanics. Journal of Geometric Mechanics, 2011, 3 (1) : 41-79. doi: 10.3934/jgm.2011.3.41

[2]

Brennan McCann, Morad Nazari. Control and maintenance of fully-constrained and underconstrained rigid body motion on Lie groups and their tangent bundles. Journal of Geometric Mechanics, 2022, 14 (1) : 29-55. doi: 10.3934/jgm.2022002

[3]

Yaobang Ye, Zongyu Zuo, Michael Basin. Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3). Discrete and Continuous Dynamical Systems - S, 2022, 15 (7) : 1823-1837. doi: 10.3934/dcdss.2022010

[4]

Sujit Nair, Naomi Ehrich Leonard. Stable synchronization of rigid body networks. Networks and Heterogeneous Media, 2007, 2 (4) : 597-626. doi: 10.3934/nhm.2007.2.597

[5]

Sebastián Ferrer, Francisco J. Molero. Andoyer's variables and phases in the free rigid body. Journal of Geometric Mechanics, 2014, 6 (1) : 25-37. doi: 10.3934/jgm.2014.6.25

[6]

Zahra Al Helal, Volker Rehbock, Ryan Loxton. Modelling and optimal control of blood glucose levels in the human body. Journal of Industrial and Management Optimization, 2015, 11 (4) : 1149-1164. doi: 10.3934/jimo.2015.11.1149

[7]

Kai Koike. Wall effect on the motion of a rigid body immersed in a free molecular flow. Kinetic and Related Models, 2018, 11 (3) : 441-467. doi: 10.3934/krm.2018020

[8]

Giancarlo Benettin, Anna Maria Cherubini, Francesco Fassò. Regular and chaotic motions of the fast rotating rigid body: a numerical study. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 521-540. doi: 10.3934/dcdsb.2002.2.521

[9]

Giancarlo Benettin, Massimiliano Guzzo, Anatoly Neishtadt. A new problem of adiabatic invariance related to the rigid body dynamics. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 959-975. doi: 10.3934/dcds.2008.21.959

[10]

Arnab Roy, Takéo Takahashi. Local null controllability of a rigid body moving into a Boussinesq flow. Mathematical Control and Related Fields, 2019, 9 (4) : 793-836. doi: 10.3934/mcrf.2019050

[11]

Alex Bombrun, Jean-Baptiste Pomet. Asymptotic behavior of time optimal orbital transfer for low thrust 2-body control system. Conference Publications, 2007, 2007 (Special) : 122-129. doi: 10.3934/proc.2007.2007.122

[12]

Banavara N. Shashikanth. Poisson brackets for the dynamically coupled system of a free boundary and a neutrally buoyant rigid body in a body-fixed frame. Journal of Geometric Mechanics, 2020, 12 (1) : 25-52. doi: 10.3934/jgm.2020003

[13]

Urszula Ledzewicz, Helen Moore. Optimal control applied to a generalized Michaelis-Menten model of CML therapy. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 331-346. doi: 10.3934/dcdsb.2018022

[14]

Matthias Hieber, Miho Murata. The $L^p$-approach to the fluid-rigid body interaction problem for compressible fluids. Evolution Equations and Control Theory, 2015, 4 (1) : 69-87. doi: 10.3934/eect.2015.4.69

[15]

Paul Deuring, Stanislav Kračmar, Šárka Nečasová. A leading term for the velocity of stationary viscous incompressible flow around a rigid body performing a rotation and a translation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1389-1409. doi: 10.3934/dcds.2017057

[16]

Bernard Bonnard, Olivier Cots, Nataliya Shcherbakova. The Serret-Andoyer Riemannian metric and Euler-Poinsot rigid body motion. Mathematical Control and Related Fields, 2013, 3 (3) : 287-302. doi: 10.3934/mcrf.2013.3.287

[17]

Šárka Nečasová, Joerg Wolf. On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1539-1562. doi: 10.3934/dcds.2016.36.1539

[18]

Nguyen Thi Toan. Generalized Clarke epiderivatives of the extremum multifunction to a multi-objective parametric discrete optimal control problem. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021088

[19]

Marshall Hampton, Anders Nedergaard Jensen. Finiteness of relative equilibria in the planar generalized $N$-body problem with fixed subconfigurations. Journal of Geometric Mechanics, 2015, 7 (1) : 35-42. doi: 10.3934/jgm.2015.7.35

[20]

Jean-Baptiste Caillau, Bilel Daoud, Joseph Gergaud. Discrete and differential homotopy in circular restricted three-body control. Conference Publications, 2011, 2011 (Special) : 229-239. doi: 10.3934/proc.2011.2011.229

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (8)

[Back to Top]