-
Previous Article
Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover
- JGM Home
- This Issue
-
Next Article
Lyapunov constraints and global asymptotic stabilization
Embedded geodesic problems and optimal control for matrix Lie groups
1. | Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States |
2. | Department of Electrical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States |
3. | Department of Mechanical Engineering, University of Hawai‘i at Mānoa, Honolulu, HI 96822, United States |
4. | Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, NM 88003, United States |
References:
[1] |
2nd edition, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1978. |
[2] |
2nd edition, Graduate Texts in Mathematics, 60, Springer Verlag, New York, 1989. |
[3] |
number 24 in "Interdisciplinary Texts in Mathematics," Springer Verlag, New York, 2003. |
[4] |
In "Proc. IEEE Conf. on Decision and Control," Sydney, Australia, (December 2000), 1273-1279, arXiv:nlin/0103042. Google Scholar |
[5] |
Nonlinearity, 15 (2002), 1309-1341.
doi: 10.1088/0951-7715/15/4/316. |
[6] |
Foundations of Computational Mathematics, 8 (2008), 469-500.
doi: 10.1007/s10208-008-9025-1. |
[7] |
Nonlinearity, 19 (2006), 2247-2276.
doi: 10.1088/0951-7715/19/10/002. |
[8] |
in "Dynamical Systems in Classical Mechanics," American Mathematical Society Translations, 168, Amer. Math. Soc., Providence, RI, (1995), 141-171. |
[9] |
F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., (). Google Scholar |
[10] |
Prentice-Hall, Inc., Englewood Cliffs, NJ, (reprinted by Dover, 2000), 1963. |
[11] |
D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., (). Google Scholar |
[12] |
Dover Publications, New York, 2004. Google Scholar |
[13] |
Functional Analysis and Its Applications, 10 (1976), 328-329.
doi: 10.1007/BF01076037. |
[14] |
2nd edition, Texts in Applied Mathematics, 17, Springer Verlag, New York, 1999. |
[15] |
Sov. Math. Dokl., 17 (1976), 1591-1593. Google Scholar |
[16] |
Indiana University Mathematics Journal, 29 (1980), 609-629.
doi: 10.1512/iumj.1980.29.29046. |
show all references
References:
[1] |
2nd edition, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1978. |
[2] |
2nd edition, Graduate Texts in Mathematics, 60, Springer Verlag, New York, 1989. |
[3] |
number 24 in "Interdisciplinary Texts in Mathematics," Springer Verlag, New York, 2003. |
[4] |
In "Proc. IEEE Conf. on Decision and Control," Sydney, Australia, (December 2000), 1273-1279, arXiv:nlin/0103042. Google Scholar |
[5] |
Nonlinearity, 15 (2002), 1309-1341.
doi: 10.1088/0951-7715/15/4/316. |
[6] |
Foundations of Computational Mathematics, 8 (2008), 469-500.
doi: 10.1007/s10208-008-9025-1. |
[7] |
Nonlinearity, 19 (2006), 2247-2276.
doi: 10.1088/0951-7715/19/10/002. |
[8] |
in "Dynamical Systems in Classical Mechanics," American Mathematical Society Translations, 168, Amer. Math. Soc., Providence, RI, (1995), 141-171. |
[9] |
F. Gay-Balmaz and T. S. Ratiu, Clebsch optimal control formulation in mechanics,, preprint., (). Google Scholar |
[10] |
Prentice-Hall, Inc., Englewood Cliffs, NJ, (reprinted by Dover, 2000), 1963. |
[11] |
D. D. Holm, Riemannian optimal control formulation of incompressible ideal fluid flow,, preprint., (). Google Scholar |
[12] |
Dover Publications, New York, 2004. Google Scholar |
[13] |
Functional Analysis and Its Applications, 10 (1976), 328-329.
doi: 10.1007/BF01076037. |
[14] |
2nd edition, Texts in Applied Mathematics, 17, Springer Verlag, New York, 1999. |
[15] |
Sov. Math. Dokl., 17 (1976), 1591-1593. Google Scholar |
[16] |
Indiana University Mathematics Journal, 29 (1980), 609-629.
doi: 10.1512/iumj.1980.29.29046. |
[1] |
Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021012 |
[2] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[3] |
Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021007 |
[4] |
Marzia Bisi, Maria Groppi, Giorgio Martalò, Romina Travaglini. Optimal control of leachate recirculation for anaerobic processes in landfills. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2957-2976. doi: 10.3934/dcdsb.2020215 |
[5] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[6] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[7] |
Xiaohong Li, Mingxin Sun, Zhaohua Gong, Enmin Feng. Multistage optimal control for microbial fed-batch fermentation process. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021040 |
[8] |
John T. Betts, Stephen Campbell, Claire Digirolamo. Examination of solving optimal control problems with delays using GPOPS-Ⅱ. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 283-305. doi: 10.3934/naco.2020026 |
[9] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[10] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021022 |
[11] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[12] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[13] |
Vladimir Gaitsgory, Ilya Shvartsman. Linear programming estimates for Cesàro and Abel limits of optimal values in optimal control problems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021102 |
[14] |
Shanjian Tang, Fu Zhang. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5521-5553. doi: 10.3934/dcds.2015.35.5521 |
[15] |
Andrea Signori. Penalisation of long treatment time and optimal control of a tumour growth model of Cahn–Hilliard type with singular potential. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2519-2542. doi: 10.3934/dcds.2020373 |
[16] |
Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021013 |
[17] |
Rama Ayoub, Aziz Hamdouni, Dina Razafindralandy. A new Hodge operator in discrete exterior calculus. Application to fluid mechanics. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021062 |
[18] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[19] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[20] |
Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021074 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]