\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover

Abstract Related Papers Cited by
  • We study sub-Riemannian and sub-Lorentzian geometry on the Lie group $SU(1,1)$ and on its universal cover SU~(1,1). In the sub-Riemannian case we find the distance function and completely describe sub-Riemannian geodesics on both $SU(1,1)$ and SU~(1,1), connecting two fixed points. In particular, we prove that there is a strong connection between the conjugate loci and the number of geodesics. In the sub-Lorentzian case, we describe the geodesics connecting two points on SU~(1,1), and compare them with Lorentzian ones. It turns out that the reachable sets for Lorentzian and sub-Lorentzian normal geodesics intersect but are not included one to the other. A description of the timelike future is obtained and compared in the Lorentzian and sub-Lorentzain cases.
    Mathematics Subject Classification: Primary: 53C17, 53B30, 22E30; Secondary: 53C50, 83C65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Agrachev, Exponential mapping for contact sub-Riemannian structures, Journal of Dynamical and Control Systems, 2 (1996), 321-358.doi: 10.1007/BF02269423.

    [2]

    A. Agrachev and Yu. Sachkov, "Control Theory From The Geometric Viewpoint," Encyclopaedia of Math. Sci., 87, Control Theory and Optimization, II, Springer-Verlag, Berlin, 2004.

    [3]
    [4]

    U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metric on $S^3$, $SO(3)$, $SL(2)$ and lens spaces, SIAM J. Control Optim., 47 (2008), 1851-1878.doi: 10.1137/070703727.

    [5]

    O. Calin and D.-C. Chang, "Sub-Riemannian Geometry. General Theory and Examples," Encyclopedia of Mathematics and its Applications, 126, Cambridge Univ. Press, Cambridge, 2009.

    [6]

    O. Calin, D.-C. Chang and I. Markina, Sub-Riemannian geometry of the sphere $S^3$, Canadian J. Math., 61 (2009), 721-739.doi: 10.4153/CJM-2009-039-2.

    [7]

    S. Carlip, Conformal field theory, $(2+1)$-dimensional gravity and the BTZ black hole, Classical Quantum Gravity, 22 (2005), R85-R123.doi: 10.1088/0264-9381/22/12/R01.

    [8]

    D.-C. Chang, I. Markina and A. Vasil'ev, Sub-Lorentzian geometry on anti-de Sitter space, J. Math. Pures Appl., 90 (2008), 82-110.doi: 10.1016/j.matpur.2008.02.012.

    [9]

    D.-C. Chang, I. Markina and A. Vasil'ev, Hopf fibration: geodesics and distances, J. Geom. Phys., 61 (2011), 986-1000.doi: 10.1016/j.geomphys.2011.01.011.

    [10]

    W. L. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105.doi: 10.1007/BF01450011.

    [11]

    M. Grochowski, Geodesics in the sub-Lorentzian geometry, Bull. Polish Acad. Sci. Math., 50 (2002), 161-178.

    [12]

    M. Grochowski, On the Heisenberg sub-Lorentzian metric on $\mathbb R^3$, Geometric Singularity Theory, Banach Center Publ., Polish Acad. Sci., Warsaw, 65 (2004), 57-65.

    [13]

    M. Grochowski, Reachable sets for the Heisenberg sub-Lorentzian structure $\mathbb R^3$. An estimate for the distance function, J. Dynamical and Control Systems, 12 (2006), 145-160.doi: 10.1007/s10450-006-0378-y.

    [14]

    V. Jurdjevic, "Geometric Control Theory," Cambridge Studies in Adv. Math., 52, Cambridge Univ. Press, Cambridge, 1997.

    [15]

    A. Korolko and I. Markina, Nonholonomic Lorentzian geometry on some $\mathbb H$-type groups, J. Geom. Anal., 19 (2009), 864-889.doi: 10.1007/s12220-009-9088-5.

    [16]

    W. Liu and H. J. Sussman, Shortest paths for sub-Riemannian metrics on rank-two distributions, Mem. Amer. Math. Soc., 118 (1995), 104 pp.

    [17]

    R. Montgomery, "A Tour of Subriemannian Geometries, Their Geodesics and Applications," Mathematical Surveys and Monographs, 91, American Mathematical Society, Providence, RI, 2002.

    [18]

    P. K. Rashevskiĭ, About connecting two points of complete nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. K. Liebknecht, 2 (1938), 83-94.

    [19]

    R. S. Strichartz, Sub-Riemannian geometry, J. Differential Geom., 24 (1986), 221-263.

    [20]

    R. S. Strichartz, Corrections to: "Sub-Riemannian geometry", J. Differential Geom., 24 (1986), 221-263; J. Differential Geom., 30 (1989), 595-596.

    [21]

    A. M. Vershik and V. Ya. Gershkovich, Geodesic flow on $\SL(2,\mathbb R)$ with nonholonomic restrictions, Zap. Nauchn. Semin. LOMI, 155 (1986), 7-17.

    [22]

    E. Witten, String theory and black holes, Phys. Rev. D, 44 (1991), 314-324.doi: 10.1103/PhysRevD.44.314.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(124) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return