March  2011, 3(1): 23-40. doi: 10.3934/jgm.2011.3.23

Reduction of invariant constrained systems using anholonomic frames

1. 

Department of Mathematics, Ghent University, Krijgslaan 281, S9, B-9000 Gent, Belgium, Belgium

Received  October 2010 Revised  April 2011 Published  April 2011

We analyze two reduction methods for nonholonomic systems that are invariant under the action of a Lie group on the configuration space. Our approach for obtaining the reduced equations is entirely based on the observation that the dynamics can be represented by a second-order differential equations vector field and that in both cases the reduced dynamics can be described by expressing that vector field in terms of an appropriately chosen anholonomic frame.
Citation: Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23
References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).   Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323.  doi: 10.1017/S0305004101005679.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).   Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.   Google Scholar

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).   Google Scholar

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159.  doi: 10.1080/14689360903360888.  Google Scholar

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).   Google Scholar

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).   Google Scholar

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.   Google Scholar

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).   Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).   Google Scholar

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.   Google Scholar

show all references

References:
[1]

A. M. Bloch with the collaboration of J. Baillieul, P. Crouch and J. E. Marsden, "Nonholonomic Mechanics and Control,'', Springer, (2003).   Google Scholar

[2]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[3]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasi-velocities and symmetries in nonholonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[4]

F. Cantrijn, J. Cortés, M. de León and D. Martín de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Camb. Phil. Soc., 132 (2002), 323.  doi: 10.1017/S0305004101005679.  Google Scholar

[5]

H. Cendra, J. E. Marsden and T. S. Ratiu, "Lagrangian Reduction by Stages,'', Memoirs of the American Mathematical Society 152, (2001).   Google Scholar

[6]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems,, in, (2001), 221.   Google Scholar

[7]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics 1793, (1793).   Google Scholar

[8]

M. Crampin and T. Mestdag, Routh's procedure for non-Abelian symmetry groups,, J. Math. Phys., 49 (2008).  doi: 10.1063/1.2885077.  Google Scholar

[9]

M. Crampin and T. Mestdag, Reduction and reconstruction aspects of second-order dynamical systems with symmetry,, Acta Appl. Math., 105 (2009), 241.  doi: 10.1007/s10440-008-9274-7.  Google Scholar

[10]

M. Crampin and T. Mestdag, Anholonomic frames in constrained dynamics,, Dynamical Systems, 25 (2010), 159.  doi: 10.1080/14689360903360888.  Google Scholar

[11]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry,'', LMS Lecture Notes 59, (1988).   Google Scholar

[12]

R. H. Cushman, H. Duistermaat and J. Śniatycki, "Geometry of Nonholonomically Constrained Systems,'', Advanced Series in Nonlinear Dynamics 26, (2010).   Google Scholar

[13]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).  doi: 10.1088/0305-4470/38/24/R01.  Google Scholar

[14]

K. Ehlers, J. Koiller, R. Montgomery and P. M. Rios, Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization,, The Breadth of Symplectic Geometry, (2005), 75.   Google Scholar

[15]

B. Jovanovic, Geometry and integrability of Euler-Poincaré-Suslov equations,, Nonlinearity, 14 (2001), 1555.  doi: 10.1088/0951-7715/14/6/308.  Google Scholar

[16]

J. Koiller, Reduction of some classical non-holonomic systems with symmetry,, Arch. Rat. Mech. Anal., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

O. Krupková, Mechanical systems with non-holonomic constraints,, J. Math. Phys., 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[18]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry,'', Texts in Applied Mathematics 17, (1999).   Google Scholar

[19]

J. E. Marsden, T. S. Ratiu and J. Scheurle, Reduction theory and the Lagrange-Routh equations,, J. Math. Phys., 41 (2000), 3379.  doi: 10.1063/1.533317.  Google Scholar

[20]

T. Mestdag and M. Crampin, Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/34/344015.  Google Scholar

[21]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, J. Phys. A: Math. Gen., 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[22]

J. I. Neĭmark and N. A. Fufaev, "Dynamics of Nonholonomic Systems,'', Transl. of Math. Monographs 33, (1972).   Google Scholar

[23]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A: Math. Gen., 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[24]

J. Vilms, Connections on tangent bundles,, J. Diff. Geom., 1 (1967), 235.   Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[2]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[5]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[6]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[7]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[8]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[9]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[10]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[11]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[12]

Meihua Dong, Keonhee Lee, Carlos Morales. Gromov-Hausdorff stability for group actions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1347-1357. doi: 10.3934/dcds.2020320

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[15]

Nan Zhang, Linyi Qian, Zhuo Jin, Wei Wang. Optimal stop-loss reinsurance with joint utility constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 841-868. doi: 10.3934/jimo.2020001

[16]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[17]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[18]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[19]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[20]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]