- Previous Article
- JGM Home
- This Issue
-
Next Article
Sub-Riemannian and sub-Lorentzian geometry on $SU(1,1)$ and on its universal cover
Euler-Poincaré reduction for systems with configuration space isotropy
1. | Department of Mathematics and Computer Science, Western Carolina University, Cullowhee, NC 28723, United States |
2. | Department of Computer Science, University of Toronto, 10 King’s College Road, Room 3302, Toronto, ON, M5S 3G4, Canada |
3. | Department of Mathematics, Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5, Canada |
References:
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Benjamin/Cummings Publishing Co., (1978).
|
[2] |
A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. on Systems and Control, 45 (2000), 2253.
doi: 10.1109/9.895562. |
[3] |
A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. on Automatic Control, 46 (2001), 1556.
|
[4] |
H. Cendra, J. E. Marsden and T. Ratiu, "Lagrangian Reduction by Stages,", Memoirs of the American Mathematical Society, 152 (2001).
|
[5] |
R. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems,", Birkhäuser Verlag, (1997).
doi: 10.1007/978-3-0348-8891-2. |
[6] |
V. Guillemin and S. Sternberg, A normal form for the moment map,, In, 6 (1984).
|
[7] |
J. J. Duistermaat and J. A. C. Kolk, "Lie Groups,", Springer-Verlag, (2000).
doi: 10.1007/978-3-642-56936-4. |
[8] |
D. D. Holm, T. Schmah and C. Stoica, "Geometric Mechanics and Symmetry: from Finite to Infinite Dimensions,", Oxford Texts in Applied and Engineering Mathematics, 12 (2009).
|
[9] |
E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.
doi: 10.1088/0951-7715/11/6/012. |
[10] |
D. Lewis, Lagrangian block diagonalization,, Journal of Dynamics and Differential Equations, 4 (1992), 1.
doi: 10.1007/BF01048153. |
[11] |
C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique,, Rendiconti del Seminario Matematico, 43 (1985), 227.
|
[12] |
J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).
|
[13] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition., Texts in Applied Mathematics, 17 (1999).
|
[14] |
J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Math. Phys., 5 (1974), 121.
doi: 10.1016/0034-4877(74)90021-4. |
[15] |
J. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.
doi: 10.1016/S0764-4442(99)80389-9. |
[16] |
J. Montaldi and R. M. Roberts, Relative Equilibria of Molecules,, J. Nonlinear Sci., 9 (1999), 53.
doi: 10.1007/s003329900064. |
[17] |
J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.
doi: 10.1088/0951-7715/12/3/315. |
[18] |
J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics, 222 (2004).
|
[19] |
G. W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111.
doi: 10.1016/0393-0440(92)90015-S. |
[20] |
R. Palais, On the existence of slices for actions of non-compact Lie groups,, Ann. Math., 73 (1961), 295.
doi: 10.2307/1970335. |
[21] |
M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.
doi: 10.1088/0951-7715/19/4/005. |
[22] |
R. M. Roberts and M. E. R. de Sousa Dias, Bifurcations from relative equilibria of Hamiltonian systems,, Nonlinearity, 10 (1997), 1719.
doi: 10.1088/0951-7715/10/6/015. |
[23] |
M. Roberts, T. Schmah and C. Stoica, Relative equilibria in systems with configuration space isotropy,, J. Geom. Phys., 56 (2006), 762.
doi: 10.1016/j.geomphys.2005.04.017. |
[24] |
R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Ann. of Math., 134 (1991), 375.
doi: 10.2307/2944350. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition,, Benjamin/Cummings Publishing Co., (1978).
|
[2] |
A. M. Bloch, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems I: The first matching theorem,, IEEE Trans. on Systems and Control, 45 (2000), 2253.
doi: 10.1109/9.895562. |
[3] |
A. M. Bloch, D. E. Chang, N. E. Leonard and J. E. Marsden, Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping,, IEEE Trans. on Automatic Control, 46 (2001), 1556.
|
[4] |
H. Cendra, J. E. Marsden and T. Ratiu, "Lagrangian Reduction by Stages,", Memoirs of the American Mathematical Society, 152 (2001).
|
[5] |
R. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems,", Birkhäuser Verlag, (1997).
doi: 10.1007/978-3-0348-8891-2. |
[6] |
V. Guillemin and S. Sternberg, A normal form for the moment map,, In, 6 (1984).
|
[7] |
J. J. Duistermaat and J. A. C. Kolk, "Lie Groups,", Springer-Verlag, (2000).
doi: 10.1007/978-3-642-56936-4. |
[8] |
D. D. Holm, T. Schmah and C. Stoica, "Geometric Mechanics and Symmetry: from Finite to Infinite Dimensions,", Oxford Texts in Applied and Engineering Mathematics, 12 (2009).
|
[9] |
E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.
doi: 10.1088/0951-7715/11/6/012. |
[10] |
D. Lewis, Lagrangian block diagonalization,, Journal of Dynamics and Differential Equations, 4 (1992), 1.
doi: 10.1007/BF01048153. |
[11] |
C.-M. Marle, Modèle d'action hamiltonienne d'un groupe de Lie sur une variété symplectique,, Rendiconti del Seminario Matematico, 43 (1985), 227.
|
[12] |
J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).
|
[13] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," 2nd edition., Texts in Applied Mathematics, 17 (1999).
|
[14] |
J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Rep. Math. Phys., 5 (1974), 121.
doi: 10.1016/0034-4877(74)90021-4. |
[15] |
J. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.
doi: 10.1016/S0764-4442(99)80389-9. |
[16] |
J. Montaldi and R. M. Roberts, Relative Equilibria of Molecules,, J. Nonlinear Sci., 9 (1999), 53.
doi: 10.1007/s003329900064. |
[17] |
J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.
doi: 10.1088/0951-7715/12/3/315. |
[18] |
J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics, 222 (2004).
|
[19] |
G. W. Patrick, Relative equilibria in Hamiltonian systems: the dynamic interpretation of nonlinear stability on a reduced phase space,, J. Geom. Phys., 9 (1992), 111.
doi: 10.1016/0393-0440(92)90015-S. |
[20] |
R. Palais, On the existence of slices for actions of non-compact Lie groups,, Ann. Math., 73 (1961), 295.
doi: 10.2307/1970335. |
[21] |
M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.
doi: 10.1088/0951-7715/19/4/005. |
[22] |
R. M. Roberts and M. E. R. de Sousa Dias, Bifurcations from relative equilibria of Hamiltonian systems,, Nonlinearity, 10 (1997), 1719.
doi: 10.1088/0951-7715/10/6/015. |
[23] |
M. Roberts, T. Schmah and C. Stoica, Relative equilibria in systems with configuration space isotropy,, J. Geom. Phys., 56 (2006), 762.
doi: 10.1016/j.geomphys.2005.04.017. |
[24] |
R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Ann. of Math., 134 (1991), 375.
doi: 10.2307/2944350. |
[1] |
Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173 |
[2] |
Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168 |
[3] |
Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605 |
[4] |
Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415 |
[5] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[6] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[7] |
Indranil Chowdhury, Gyula Csató, Prosenjit Roy, Firoj Sk. Study of fractional Poincaré inequalities on unbounded domains. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020394 |
[8] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[9] |
Daniele Bartolucci, Changfeng Gui, Yeyao Hu, Aleks Jevnikar, Wen Yang. Mean field equations on tori: Existence and uniqueness of evenly symmetric blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3093-3116. doi: 10.3934/dcds.2020039 |
[10] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[11] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[12] |
Hui Gao, Jian Lv, Xiaoliang Wang, Liping Pang. An alternating linearization bundle method for a class of nonconvex optimization problem with inexact information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 805-825. doi: 10.3934/jimo.2019135 |
[13] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[14] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[15] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[16] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[17] |
Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234 |
[18] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[19] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[20] |
Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020390 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]