\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Infinitesimal gauge symmetries of closed forms

Abstract / Introduction Related Papers Cited by
  • Motivated by the relationship between symplectic fibrations and classical Yang-Mills theories, we study the closedness of a $n$-form ($n$=2,3) defined on the total space of a fibration as a simple model for an abstract field theory. We introduce $2$-plectic fibrations and interpret geometrically the corresponding equations for coupling in terms of higher analogues of connections.
    Mathematics Subject Classification: Primary: 53C8, 70S15; Secondary: 55R20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Alekseev, A. Malkin and E. Meinreken, Lie group valued moment maps, J. of Differential Geom., 48 (1998), 445-495.

    [2]

    R. Abraham and J. E. Marsden, "Foundations of Mechanics," 2nd edition, Addison-Wesley, 1987.

    [3]

    J. C. BaezHigher Yang-Mills theory, preprint, arXiv:hep-th/0206130.

    [4]

    J. C. Baez and A. S. Crans, Higher-dimensional algebra. VI. Lie 2-algebras, Theory and Applications of Categories, 12 (2004), 492-538.

    [5]

    J. C. Baez and A. D. Lauda, Higher-dimensional algebra. V. 2-groups, Theory and Applications of Categories, 12 (2004), 423-491.

    [6]

    J. C. Baez and J. HuertaAn invitation to higher Gauge theory, arXiv:1003.4485.

    [7]

    J. C. Baez, A. E. Hoffnung and C. L. Rogers, Categorified symplectic geometry and the classical string, Comm. Math. Phys., 293 (2010), 701-725.doi: 10.1007/s00220-009-0951-9.

    [8]

    J. C. Baez and U. Schreier, Higher gauge theory: 2-connections on 2-bundles, preprint, arXiv:hep-th/0412325, 2004.

    [9]

    O. Brahic, Extensions of Lie brackets, Journal of Geometry and Physics, 60 (2010), 352-374.doi: 10.1016/j.geomphys.2009.10.006.

    [10]

    O. Brahic and C. Zhu, Lie algebroid fibrations, Adv. Math., 226 (2011), 3105-3135.doi: 10.1016/j.aim.2010.10.006.

    [11]

    L. Breena nd W. Messing, Differential geometry of gerbes, Adv. Math., 198 (2005), 732-846.doi: 10.1016/j.aim.2005.06.014.

    [12]

    J.-L. Brylinski, "Loop Spaces, Characteristic Classes and Geometric Quantization," Progr. Math., 107, Birkhäuser Boston, Inc., Boston, MA, 1993.

    [13]

    H. Bursztyn and M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds, in "The Breadth of Symplectic and Poisson Geometry," 1-40, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005.

    [14]

    H. Bursztyn, Gil R. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Advances in Mathematics, 211 (2007), 726-765.doi: 10.1016/j.aim.2006.09.008.

    [15]

    D. Conduché, Modules croisés généralisés de longueur 2, in "Proceedings of the Luminy Conference on Algebraic K-Theory" (Luminy, 1983), J. Pure Appl. Algebra, 34 (1984), 155-178.

    [16]

    M. Crainic, Prequantization and Lie brackets, J. Symplectic Geom., 2 (2004), 579-602.

    [17]

    M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2), 157 (2003), 575-620.doi: 10.4007/annals.2003.157.575.

    [18]

    C. Ehresmann, Les connexions infinitésimales dans un espace fibré différentiable, in "Séminaire Bourbaki," Vol. 1, Exp. No. 24, 153-168, Soc. Math. France, Paris, 1995.

    [19]

    V. Guillemin, E. Lerman and S. Sternberg, "Symplectic Fibrations and Multiplicity Diagrams," Cambridge University Press, Cambridge, 1996.doi: 10.1017/CBO9780511574788.

    [20]

    M. Gotay, R. Lashof, J. Śniatycki and A. Weinstein, Closed forms on symplectic fibre bundles, Comm. Math. Helv., 58 (1983), 617-621.doi: 10.1007/BF02564656.

    [21]

    V. Guillemin and S. Sternberg, "Symplectic Techniques in Physics," 2nd edition, Cambridge University Press, Cambridge, 1990.

    [22]

    F. Lalonde and D. McDuff, Symplectic structures on fibre bundles, Topology, 42 (2003), 309-347.doi: 10.1016/S0040-9383(01)00020-9.

    [23]

    D. McDuff and D. Salamon, "Introduction to Symplectic Topology," 2nd edition, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1998.

    [24]

    D. McDuff, Enlarging the Hamiltonian group, Conference on Symplectic Topology, J. Symplectic Geom., 3 (2005), 481-530.

    [25]

    J. F. Martins and R. Picken, On two-dimensional holonomy, Trans. Amer. Math. Soc., 362 (2010), 5657-5695.doi: 10.1090/S0002-9947-2010-04857-3.

    [26]

    J. F. Martins and R. PickenA cubical set approach to 2-bundles with connection and Wilson surfaces, arXiv:0808.3964.

    [27]

    J. F. Martins and R. Picken, The fundamental Gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module, Differential Geom. Appl., 29 (2011), 179-206.doi: 10.1016/j.difgeo.2010.10.002.

    [28]

    J. Pradines, Théorie de Lie pour les groupoïdes différentiables. Calcul différentiel dans la catégorie des groupoïdes infinitésimaux, C.R. Acad. Sci. Paris Sér. A-B, 264 (1967), A245-A248.

    [29]

    D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in "Quantization, Poisson Brackets and Beyond" (Manchester, 2001) (ed. Theodore Voronov), Contemp. Math., Vol. 315, Amer. Math. Soc., Providence, RI, 2002.

    [30]

    D. Roytenberg and A. Weinstein, Courant algebroids and strongly homotopy Lie algebras, Lett. Math. Phys., 46 (1998), 81-93.doi: 10.1023/A:1007452512084.

    [31]

    C. L. Rogers2-plectic geometry, Courant algebroids and categorified prequantizations, arXiv:1001.0040v2.

    [32]

    P. Ševera and A. Weinstein, Poisson geometry with a 3-form background. Noncommutative geometry and string theory, (Yokohama, 2001), Progr. Theoret. Phys. Suppl. No., 144 (2001), 145-154.

    [33]

    U. Schreiber and K. Waldorf, Smooth functors vs. differential forms, Homology, Homotopy Appl., 13 (2011), 143-203.doi: 10.4310/HHA.2011.v13.n1.a6.

    [34]

    U. Schreiber and K. WaldorfConnections on non-abelian Gerbes and their Holonomy, arXiv:0808.1923v1.

    [35]

    S. Sternberg, Minimal coupling and the symplectic mechanics of a classical particle in the presence of a Yang-Mills field, Proc. Nat. Acad. Sci. USA, 74 (1977), 5253-5254.doi: 10.1073/pnas.74.12.5253.

    [36]

    F. Toppan, On anomalies in classical dynamics, Journal of Nonlinear Mathematical Physics, 8 (2001), 518-533.doi: 10.2991/jnmp.2001.8.4.6.

    [37]

    A. Tsemo, Gerbes, 2-gerbes and symplectic fibrations, Rocky Mountain J. Math., 38 (2008), 727-777.

    [38]

    B. UribeGroup actions on dg-manifolds and their relation to equivariant cohomology, arXiv:1010.5413v1.

    [39]

    A. WeinsteinA universal phase space for particles in a Yang-Mills field, Letters in Mathematical Physycs, 2 (1977/78), 417-420. doi: 10.1007/BF00400169.

    [40]

    A. Weinstein, Fat bundles and symplectic manifolds, Adv. in Math., 37 (1980), 239-250.doi: 10.1016/0001-8708(80)90035-3.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(78) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return