December  2011, 3(4): 363-387. doi: 10.3934/jgm.2011.3.363

Un-reduction

1. 

Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom, United Kingdom

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

3. 

Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure de Paris, 75005 Paris, France

Received  December 2010 Revised  November 2011 Published  February 2012

This paper provides a full geometric development of a new technique called un-reduction, for dealing with dynamics and optimal control problems posed on spaces that are unwieldy for numerical implementation. The technique, which was originally conceived for an application to image dynamics, uses Lagrangian reduction by symmetry in reverse. A deeper understanding of un-reduction leads to new developments in image matching which serve to illustrate the mathematical power of the technique.
Citation: Martins Bruveris, David C. P. Ellis, Darryl D. Holm, François Gay-Balmaz. Un-reduction. Journal of Geometric Mechanics, 2011, 3 (4) : 363-387. doi: 10.3934/jgm.2011.3.363
References:
[1]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, to appear in: SIAM Journal on Imaging Sciences, ().   Google Scholar

[2]

A. Clark, C. Cotter and J. Peiro, A reparameterisation-based approach to geodesic shooting for 2D curve matching,, work in progress., ().   Google Scholar

[3]

H. Cendra, D. D. Holm, J. E. Marsden and T. S. Ratiu, Lagrangian reduction, the Euler-Poincaré equations, and semidirect products,, in, 186 (1998), 1.   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).   Google Scholar

[5]

C. J. Cotter, The variational particle-mesh method for matching curves,, J. Phys. A, 41 (2008).   Google Scholar

[6]

C. J. Cotter and D. D. Holm, Geodesic boundary value problems with symmetry,, J. Geom. Mech., 2 (2010), 51.   Google Scholar

[7]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands,, Arch. Rational Mech. Anal., 197 (2010), 811.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[8]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120.   Google Scholar

[9]

F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems,, Comm. Math. Phys. \textbf{309}(2), 309 (): 413.   Google Scholar

[10]

F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions, Journal of the Brazilian mathematical society, 42 (): 579.   Google Scholar

[11]

D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[12]

A. Kriegl and P. W. Michor, "The Convenient Setting of Global Analysis,", Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[13]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).   Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994).   Google Scholar

[15]

P. W. Michor, Manifolds of smooth maps. III: The principal bundle of embeddings of a noncompact smooth manifold,, Cah. Top. Géom. Diff., 21 (1980), 325.   Google Scholar

[16]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[17]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc., 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar

[18]

R. Montgomery, Gauge theory of the falling cat,, in, 1 (1993), 193.   Google Scholar

[19]

F.-X. Vialard, "Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework: From the Discontinuous Image Matching Problem to a Stochastic Growth Model,", Ph.D Thesis, (2009).   Google Scholar

[20]

L. Younes, "Shapes and Diffeomorphisms,", Applied Mathematical Sciences, 171 (2010).   Google Scholar

[21]

L. Younes, F. Arrate and M. I. Miller, Evolutions equations in computational anatomy,, NeuroImage, 45 (2009).  doi: 10.1016/j.neuroimage.2008.10.050.  Google Scholar

show all references

References:
[1]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, to appear in: SIAM Journal on Imaging Sciences, ().   Google Scholar

[2]

A. Clark, C. Cotter and J. Peiro, A reparameterisation-based approach to geodesic shooting for 2D curve matching,, work in progress., ().   Google Scholar

[3]

H. Cendra, D. D. Holm, J. E. Marsden and T. S. Ratiu, Lagrangian reduction, the Euler-Poincaré equations, and semidirect products,, in, 186 (1998), 1.   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).   Google Scholar

[5]

C. J. Cotter, The variational particle-mesh method for matching curves,, J. Phys. A, 41 (2008).   Google Scholar

[6]

C. J. Cotter and D. D. Holm, Geodesic boundary value problems with symmetry,, J. Geom. Mech., 2 (2010), 51.   Google Scholar

[7]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands,, Arch. Rational Mech. Anal., 197 (2010), 811.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[8]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120.   Google Scholar

[9]

F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems,, Comm. Math. Phys. \textbf{309}(2), 309 (): 413.   Google Scholar

[10]

F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions, Journal of the Brazilian mathematical society, 42 (): 579.   Google Scholar

[11]

D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[12]

A. Kriegl and P. W. Michor, "The Convenient Setting of Global Analysis,", Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[13]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).   Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994).   Google Scholar

[15]

P. W. Michor, Manifolds of smooth maps. III: The principal bundle of embeddings of a noncompact smooth manifold,, Cah. Top. Géom. Diff., 21 (1980), 325.   Google Scholar

[16]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[17]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc., 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar

[18]

R. Montgomery, Gauge theory of the falling cat,, in, 1 (1993), 193.   Google Scholar

[19]

F.-X. Vialard, "Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework: From the Discontinuous Image Matching Problem to a Stochastic Growth Model,", Ph.D Thesis, (2009).   Google Scholar

[20]

L. Younes, "Shapes and Diffeomorphisms,", Applied Mathematical Sciences, 171 (2010).   Google Scholar

[21]

L. Younes, F. Arrate and M. I. Miller, Evolutions equations in computational anatomy,, NeuroImage, 45 (2009).  doi: 10.1016/j.neuroimage.2008.10.050.  Google Scholar

[1]

Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[4]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[5]

Valerii Maltsev, Michael Pokojovy. On a parabolic-hyperbolic filter for multicolor image noise reduction. Evolution Equations & Control Theory, 2016, 5 (2) : 251-272. doi: 10.3934/eect.2016004

[6]

Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87

[7]

Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297

[8]

Laura Luzzi, Ghaya Rekaya-Ben Othman, Jean-Claude Belfiore. Algebraic reduction for the Golden Code. Advances in Mathematics of Communications, 2012, 6 (1) : 1-26. doi: 10.3934/amc.2012.6.1

[9]

Jean-François Babadjian, Francesca Prinari, Elvira Zappale. Dimensional reduction for supremal functionals. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1503-1535. doi: 10.3934/dcds.2012.32.1503

[10]

Katarzyna Grabowska, Paweƚ Urbański. Geometry of Routh reduction. Journal of Geometric Mechanics, 2019, 11 (1) : 23-44. doi: 10.3934/jgm.2019002

[11]

Thomas Espitau, Antoine Joux. Certified lattice reduction. Advances in Mathematics of Communications, 2020, 14 (1) : 137-159. doi: 10.3934/amc.2020011

[12]

Jürgen Scheurle, Stephan Schmitz. A criterion for asymptotic straightness of force fields. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 777-792. doi: 10.3934/dcdsb.2010.14.777

[13]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[14]

Ning Zhang, Qiang Wu. Online learning for supervised dimension reduction. Mathematical Foundations of Computing, 2019, 2 (2) : 95-106. doi: 10.3934/mfc.2019008

[15]

Angel Angelov, Marcus Wagner. Multimodal image registration by elastic matching of edge sketches via optimal control. Journal of Industrial & Management Optimization, 2014, 10 (2) : 567-590. doi: 10.3934/jimo.2014.10.567

[16]

Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems & Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551

[17]

Rentsen Enkhbat, Evgeniya A. Finkelstein, Anton S. Anikin, Alexandr Yu. Gornov. Global optimization reduction of generalized Malfatti's problem. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 211-221. doi: 10.3934/naco.2017015

[18]

Andrei Korobeinikov, Aleksei Archibasov, Vladimir Sobolev. Order reduction for an RNA virus evolution model. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1007-1016. doi: 10.3934/mbe.2015.12.1007

[19]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[20]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

[Back to Top]