\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Un-reduction

Abstract / Introduction Related Papers Cited by
  • This paper provides a full geometric development of a new technique called un-reduction, for dealing with dynamics and optimal control problems posed on spaces that are unwieldy for numerical implementation. The technique, which was originally conceived for an application to image dynamics, uses Lagrangian reduction by symmetry in reverse. A deeper understanding of un-reduction leads to new developments in image matching which serve to illustrate the mathematical power of the technique.
    Mathematics Subject Classification: 37K05, 37K65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bauer, P. Harms and P. W. MichorAlmost local metrics on shape space of hypersurfaces in n-space, to appear in: SIAM Journal on Imaging Sciences, arXiv:1001.0717v2.

    [2]

    A. Clark, C. Cotter and J. PeiroA reparameterisation-based approach to geodesic shooting for 2D curve matching, work in progress.

    [3]

    H. Cendra, D. D. Holm, J. E. Marsden and T. S. Ratiu, Lagrangian reduction, the Euler-Poincaré equations, and semidirect products, in "Geometry of Differential Equations" (eds. A. Khovanskii, A. Varchenko and V. Vassiliev), Amer. Math. Soc. Trans. Ser. 2, 186, Amer. Math. Soc., Providence, RI, (1998), 1-25.

    [4]

    H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001), x+108 pp.

    [5]

    C. J. Cotter, The variational particle-mesh method for matching curves, J. Phys. A, 41 (2008), 344003, 18 pp.

    [6]

    C. J. Cotter and D. D. Holm, Geodesic boundary value problems with symmetry, J. Geom. Mech., 2 (2010), 51-68.

    [7]

    D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands, Arch. Rational Mech. Anal., 197 (2010), 811-902.doi: 10.1007/s00205-010-0305-y.

    [8]

    D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations, J. Geom. Phys., 61 (2011), 2120-2146.

    [9]

    F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F.-X. VialardInvariant higher-order variational problems, Comm. Math. Phys. 309(2), 413-458, arXiv:1012.5060.

    [10]

    F. Gay-Balmaz, D. D. Holm and T. S. RatiuHigher order Lagrange-Poincaré and Hamilton-Poincaré reductions Journal of the Brazilian mathematical society, 42(4), 579-606.

    [11]

    D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. Math., 137 (1998), 1-81.doi: 10.1006/aima.1998.1721.

    [12]

    A. Kriegl and P. W. Michor, "The Convenient Setting of Global Analysis," Mathematical Surveys and Monographs, 53, AMS, Providence, RI, 1997.

    [13]

    J. E. Marsden, "Lectures on Mechanics," London Mathematical Society Lecture Note Series, 174, Cambridge University Press, Cambridge, 1992.

    [14]

    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems," Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.

    [15]

    P. W. Michor, Manifolds of smooth maps. III: The principal bundle of embeddings of a noncompact smooth manifold, Cah. Top. Géom. Diff., 21 (1980), 325-337.

    [16]

    P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.doi: 10.1016/j.acha.2006.07.004.

    [17]

    P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc., 8 (2006), 1-48.doi: 10.4171/JEMS/37.

    [18]

    R. Montgomery, Gauge theory of the falling cat, in "Dynamics and Control of Mechanical Systems" (Waterloo, ON, 1992), Fields Inst. Comm., 1, Amer. Math. Soc., Providence, RI, (1993), 193-218.

    [19]

    F.-X. Vialard, "Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework: From the Discontinuous Image Matching Problem to a Stochastic Growth Model," Ph.D Thesis, École Normale Supérieure de Cachan, 2009.

    [20]

    L. Younes, "Shapes and Diffeomorphisms," Applied Mathematical Sciences, 171, Springer-Verlag, Berlin, 2010.

    [21]

    L. Younes, F. Arrate and M. I. Miller, Evolutions equations in computational anatomy, NeuroImage, 45 (2009), S40-S50.doi: 10.1016/j.neuroimage.2008.10.050.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(126) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return