December  2011, 3(4): 363-387. doi: 10.3934/jgm.2011.3.363

Un-reduction

1. 

Department of Mathematics, Imperial College London, London, SW7 2AZ, United Kingdom, United Kingdom

2. 

Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

3. 

Laboratoire de Météorologie Dynamique, Ecole Normale Supérieure de Paris, 75005 Paris, France

Received  December 2010 Revised  November 2011 Published  February 2012

This paper provides a full geometric development of a new technique called un-reduction, for dealing with dynamics and optimal control problems posed on spaces that are unwieldy for numerical implementation. The technique, which was originally conceived for an application to image dynamics, uses Lagrangian reduction by symmetry in reverse. A deeper understanding of un-reduction leads to new developments in image matching which serve to illustrate the mathematical power of the technique.
Citation: Martins Bruveris, David C. P. Ellis, Darryl D. Holm, François Gay-Balmaz. Un-reduction. Journal of Geometric Mechanics, 2011, 3 (4) : 363-387. doi: 10.3934/jgm.2011.3.363
References:
[1]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, to appear in: SIAM Journal on Imaging Sciences, ().   Google Scholar

[2]

A. Clark, C. Cotter and J. Peiro, A reparameterisation-based approach to geodesic shooting for 2D curve matching,, work in progress., ().   Google Scholar

[3]

H. Cendra, D. D. Holm, J. E. Marsden and T. S. Ratiu, Lagrangian reduction, the Euler-Poincaré equations, and semidirect products,, in, 186 (1998), 1.   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).   Google Scholar

[5]

C. J. Cotter, The variational particle-mesh method for matching curves,, J. Phys. A, 41 (2008).   Google Scholar

[6]

C. J. Cotter and D. D. Holm, Geodesic boundary value problems with symmetry,, J. Geom. Mech., 2 (2010), 51.   Google Scholar

[7]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands,, Arch. Rational Mech. Anal., 197 (2010), 811.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[8]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120.   Google Scholar

[9]

F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems,, Comm. Math. Phys. \textbf{309}(2), 309 (): 413.   Google Scholar

[10]

F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions, Journal of the Brazilian mathematical society, 42 (): 579.   Google Scholar

[11]

D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[12]

A. Kriegl and P. W. Michor, "The Convenient Setting of Global Analysis,", Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[13]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).   Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994).   Google Scholar

[15]

P. W. Michor, Manifolds of smooth maps. III: The principal bundle of embeddings of a noncompact smooth manifold,, Cah. Top. Géom. Diff., 21 (1980), 325.   Google Scholar

[16]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[17]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc., 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar

[18]

R. Montgomery, Gauge theory of the falling cat,, in, 1 (1993), 193.   Google Scholar

[19]

F.-X. Vialard, "Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework: From the Discontinuous Image Matching Problem to a Stochastic Growth Model,", Ph.D Thesis, (2009).   Google Scholar

[20]

L. Younes, "Shapes and Diffeomorphisms,", Applied Mathematical Sciences, 171 (2010).   Google Scholar

[21]

L. Younes, F. Arrate and M. I. Miller, Evolutions equations in computational anatomy,, NeuroImage, 45 (2009).  doi: 10.1016/j.neuroimage.2008.10.050.  Google Scholar

show all references

References:
[1]

M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, to appear in: SIAM Journal on Imaging Sciences, ().   Google Scholar

[2]

A. Clark, C. Cotter and J. Peiro, A reparameterisation-based approach to geodesic shooting for 2D curve matching,, work in progress., ().   Google Scholar

[3]

H. Cendra, D. D. Holm, J. E. Marsden and T. S. Ratiu, Lagrangian reduction, the Euler-Poincaré equations, and semidirect products,, in, 186 (1998), 1.   Google Scholar

[4]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001).   Google Scholar

[5]

C. J. Cotter, The variational particle-mesh method for matching curves,, J. Phys. A, 41 (2008).   Google Scholar

[6]

C. J. Cotter and D. D. Holm, Geodesic boundary value problems with symmetry,, J. Geom. Mech., 2 (2010), 51.   Google Scholar

[7]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands,, Arch. Rational Mech. Anal., 197 (2010), 811.  doi: 10.1007/s00205-010-0305-y.  Google Scholar

[8]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120.   Google Scholar

[9]

F. Gay-Balmaz, D. D. Holm, D. M. Meier, T. S. Ratiu and F.-X. Vialard, Invariant higher-order variational problems,, Comm. Math. Phys. \textbf{309}(2), 309 (): 413.   Google Scholar

[10]

F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Higher order Lagrange-Poincaré and Hamilton-Poincaré reductions, Journal of the Brazilian mathematical society, 42 (): 579.   Google Scholar

[11]

D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[12]

A. Kriegl and P. W. Michor, "The Convenient Setting of Global Analysis,", Mathematical Surveys and Monographs, 53 (1997).   Google Scholar

[13]

J. E. Marsden, "Lectures on Mechanics,", London Mathematical Society Lecture Note Series, 174 (1992).   Google Scholar

[14]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems," Texts in Applied Mathematics, 17,, Springer-Verlag, (1994).   Google Scholar

[15]

P. W. Michor, Manifolds of smooth maps. III: The principal bundle of embeddings of a noncompact smooth manifold,, Cah. Top. Géom. Diff., 21 (1980), 325.   Google Scholar

[16]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar

[17]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc., 8 (2006), 1.  doi: 10.4171/JEMS/37.  Google Scholar

[18]

R. Montgomery, Gauge theory of the falling cat,, in, 1 (1993), 193.   Google Scholar

[19]

F.-X. Vialard, "Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework: From the Discontinuous Image Matching Problem to a Stochastic Growth Model,", Ph.D Thesis, (2009).   Google Scholar

[20]

L. Younes, "Shapes and Diffeomorphisms,", Applied Mathematical Sciences, 171 (2010).   Google Scholar

[21]

L. Younes, F. Arrate and M. I. Miller, Evolutions equations in computational anatomy,, NeuroImage, 45 (2009).  doi: 10.1016/j.neuroimage.2008.10.050.  Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[2]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[3]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[4]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[5]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[6]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[7]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[8]

Shudi Yang, Xiangli Kong, Xueying Shi. Complete weight enumerators of a class of linear codes over finite fields. Advances in Mathematics of Communications, 2021, 15 (1) : 99-112. doi: 10.3934/amc.2020045

[9]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[10]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[11]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[12]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[13]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[14]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[15]

Jianfeng Huang, Haihua Liang. Limit cycles of planar system defined by the sum of two quasi-homogeneous vector fields. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 861-873. doi: 10.3934/dcdsb.2020145

[16]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[19]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[20]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (4)

[Back to Top]