\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Clebsch optimal control formulation in mechanics

Abstract Related Papers Cited by
  • This paper introduces and studies a class of optimal control problems based on the Clebsch approach to Euler-Poincaré dynamics. This approach unifies and generalizes a wide range of examples appearing in the literature: the symmetric formulation of $N$-dimensional rigid body and its generalization to other matrix groups; optimal control for ideal flow using the back-to-labels map; the double bracket equations associated to symmetric spaces. New examples are provided such as the optimal control formulation for the $N$-Camassa-Holm equation and a new geodesic interpretation of its singular solutions.
    Mathematics Subject Classification: 49J15, 49J20, 37K05, 58E30, 70H30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. Agrachev and Y. Sachkov, "Control Theory from the Geometric Viewpoint," Encyclopaedia of Mathematical Sciences, Vol 87, Control Theory and Optimization Vol II, Springer Verlag.

    [2]

    V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimenson infinie et ses applications à l'hydrodynamique des fluides parfaits, Ann. Inst. Fourier, Grenoble, 16 (1966), 319-361.

    [3]

    A. M. Bloch, R. W. Brockett and P. E. Crouch, Double bracket equations and geodesic flows on symmetric spaces, Commun. Math. Phys., 187 (1997), 357-373.doi: 10.1007/s002200050140.

    [4]

    A. M. Bloch and P. E. Crouch, Optimal control and geodesic fows, Syst. & Control Lett., 28 (1996), 65-76.doi: 10.1016/0167-6911(96)00008-4.

    [5]

    A. M. Bloch, P. E. Crouch, D. D. Holm and J. E. Marsden, An optimal control formulation for inviscid incompressible ideal fluid flow, Proc. CDC IEEE, 39 (2000), 1273-1279. http://xxx.lanl.gov/abs/nlin.CD/0103042

    [6]

    A. M. Bloch, P. E. Crouch, J. E. Marsden and T. S. Ratiu, Discrete rigid body dynamics and optimal control, Proc. IEEE Conf. on Decision and Control, 37 (1998), 2249-2254.

    [7]

    A. M. Bloch, P. E. Crouch and N. NordkvistClebsch optimal control representation of mechanical systems and corresponding discretization, preprint.

    [8]

    A. M. Bloch, P. E. Crouch, J. E. Marsden and A. K Sanyal, Optimal control and geodesics on quadratic matrix Lie groups, Found. Comput. Math., 8 (2008), 469-500.doi: 10.1007/s10208-008-9025-1.

    [9]

    A. M. Bloch, P. E. Crouch and A. K Sanyal, A variational problem on Stiefel manifolds, Nonlinearity, 19 (2006), 2247-2276.doi: 10.1088/0951-7715/19/10/002.

    [10]

    R. Brockett, The double bracket equation as the solution of a variational problem, Hamiltonian and gradient flows, algorithms and control, 69-76, Fields Inst. Commun., 3 (1994), Amer. Math. Soc., Providence, RI.

    [11]

    R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661.

    [12]

    C. J. Cotter, The variational particle-mesh method for matching curves, J. Phys. A: Math. Theor., 41 (2008), 344003, 18 pp.

    [13]

    C. J. Cotter and D. D. Holm, Continuous and discrete Clebsch variational principles, Found. Comput. Math., 9 (2009), 221-242.doi: 10.1007/s10208-007-9022-9.

    [14]

    C. J. Cotter and D. D. Holm, Geodesic boundary value problems with symmetry, J. Geom. Mech., 2 (2010), 51-68.doi: 10.3934/jgm.2010.2.51.

    [15]

    C. J. Cotter, D. D. Holm and P. E. Hydon, Multisymplectic formulation of fluid dynamics using the inverse map, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 463 (2007), 2671-2687.

    [16]

    F. Gay-Balmaz, D. D. Holm, D. Meier, T. S. Ratiu and F.-X. Vialard [2011]Invariant higher-order variational problems, Comm. Math. Phys., to appear.

    [17]

    F. Gay-Balmaz and T. S. Ratiu, Reduced Lagrangian and Hamiltonian formulations of Euler-Yang-Mills fluids, J. Symplectic Geom., 6 (2008), 189-237.

    [18]

    F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids, Adv. Appl. Math., 42 (2008), 176-275.

    [19]

    F. Gay-Balmaz and C. Tronci, Reduction theory for symmetry breaking with applications to nematic systems, Physica D, 239 (2010), 1929-1947.doi: 10.1016/j.physd.2010.07.002.

    [20]

    F. Gay-Balmaz and C. Vizman [2011]Dual pairs in fluid dynamics, Annals of Global Analysis and Geometry, to appear.

    [21]

    D. D. Holm, Euler-Poincaré dynamics of perfect complex fluids, In Geometry, Dynamics and Mechanics: 60th Birthday Volume for J. E. Marsden. P. Holmes, P. Newton and A. Weinstein, eds., Springer-Verlag (2002), 113-167.

    [22]

    D. D. Holm, Euler's fluid equations: Optimal control vs optimization, Phys. Lett. A, 373 (2009), 4354-4359.doi: 10.1016/j.physleta.2009.09.061.

    [23]

    D. D. Holm and B. A. Kupershmidt, Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity, Physica D, 6 (1983), 347-363.doi: 10.1016/0167-2789(83)90017-9.

    [24]

    D. D. Holm and J. E. Marsden, Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation, In The Breadth of Symplectic and Poisson Geometry, A Festshrift for Alan Weinstein, 203-235, Progr. Math., 232, J. E. Marsden and T. S. Ratiu, Editors, Birkhäuse Boston, Boston, MA, (2004).

    [25]

    D. D. Holm, J. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories, Adv. in Math., 137 (1998), 1-81.doi: 10.1006/aima.1998.1721.

    [26]

    D. D. Holm, J. E. Marsden and T. S. Ratiu, Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 349 (1998), 4173-4177.doi: 10.1103/PhysRevLett.80.4173.

    [27]

    M. Ise and M. Takeuchi, "Lie groups. I, II," Translations of Mathematical Monographs, 85, American Mathematical Society, Providence, 1991.

    [28]

    O. Kowalski and J. Szenthe, On the existence of homogeneous geodesics in homogeneous Riemannian manifolds, Geom. Dedicata, 81 (2000), 209-214.doi: 10.1023/A:1005287907806.

    [29]

    S. V. Manakov, A remark on the integration of Euler',s equations of the dynamics of an n-dimensional rigid body, Funct. Anal. Appl., 10 (1976), 328-329.doi: 10.1007/BF01076037.

    [30]

    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Second Edition, Springer, 1999.

    [31]

    J. E. Marsden, T. S. Ratiu and A. Weinstein, Semidirect product and reduction in mechanics, Trans. Amer. Math. Soc., 281 (1984), 147-177.doi: 10.1090/S0002-9947-1984-0719663-1.

    [32]

    J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Physica D, 7 (1983), 305-323.doi: 10.1016/0167-2789(83)90134-3.

    [33]

    A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Scient. Ec. Norm Sup., $4^e$ série, 18 (1985), 553-561.

    [34]

    A. S. Mishchenko and A. T. Fomenko, On the integration of the Euler equations on semisimple Lie algebras, Sov. Math. Dokl., 17 (1976), 1591-1593.

    [35]

    A. S. Mishchenko and A. T. Fomenko, Integrability of Euler equations on semisimple Lie algebras, Sel. Math. Sov., 2 (1982), 207-291.

    [36]

    T. Ratiu, The motion of the free $n$-dimensional rigid body, Indiana U. Math J., 29 (1980), 609-629.

    [37]

    L. Younes, "Shapes and Diffeomorphisms," Applied Mathematical Sciences 171, Springer-Verlag New York, 2010.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return