December  2011, 3(4): 439-486. doi: 10.3934/jgm.2011.3.439

Point vortices on the sphere: Stability of symmetric relative equilibria

1. 

Institut Non Linéaire de Nice, 1361 route des Lucioles, 06560 Valbonne, France

2. 

School of Mathematics, University of Manchester, Manchester, M13 9PL, United Kingdom

3. 

Department of Mathematics, University of Surrey, Guildford GU2 7XH, United Kingdom

Received  March 2011 Revised  May 2011 Published  February 2012

We describe the linear and nonlinear stability and instability of certain symmetric configurations of point vortices on the sphere forming relative equilibria. These configurations consist of one or two rings, and a ring with one or two polar vortices. Such configurations have dihedral symmetry, and the symmetry is used to block diagonalize the relevant matrices, to distinguish the subspaces on which their eigenvalues need to be calculated, and also to describe the bifurcations that occur as eigenvalues pass through zero.
Citation: Frederic Laurent-Polz, James Montaldi, Mark Roberts. Point vortices on the sphere: Stability of symmetric relative equilibria. Journal of Geometric Mechanics, 2011, 3 (4) : 439-486. doi: 10.3934/jgm.2011.3.439
References:
[1]

Adv. Appl. Mech., 39 (2003), 1-79. Google Scholar

[2]

Fluid Dyn., 6 (1977), 863-870. Google Scholar

[3]

SIAM J. Appl. Math., 64 (2003), 216-230.  Google Scholar

[4]

in "Geometric Mechanics and Symmetry," Based on lectures by Montaldi, LMS Lecture Note Series, 306, Cambridge University Press, Cambridge, (2005), 357-402.  Google Scholar

[5]

Regular and Chaotic Dynamics, 8 (2003), 259-282.  Google Scholar

[6]

H. E. Cabral and D. S. Schmidt, Stability of relative equilibria in the problem of $N+1$ vortices,, SIAM J. Math. Anal., 31 (): 231.   Google Scholar

[7]

Arch. Ration. Mech. Anal., 163 (2002), 1-33. Correction to "Hamiltonian Hopf bifurcation with symmetry'', Arch. Ration. Mech. Anal., 167 (2002), 83-84.  Google Scholar

[8]

Nonlinearity, 15 (2002), 531-549.  Google Scholar

[9]

With an appendix by Jerrold Marsden, Physica D, 24 (1987), 391-405.  Google Scholar

[10]

English translation, On integrals of the hydrodynamical equations which express vortex motion, Phil. Mag., 33 (1867), 485-512. Google Scholar

[11]

Prentice-Hall, 1975. Google Scholar

[12]

Physica D, 116 (1998), 143-175.  Google Scholar

[13]

Kap.\ XX, Teubner, Leipzig, 1876. Google Scholar

[14]

Chaos, 14 (2004), 592-602.  Google Scholar

[15]

Nonlinearity, 15 (2002), 143-171.  Google Scholar

[16]

Nonlinearity, 17 (2004), 1989-2013.  Google Scholar

[17]

Regul. Chaotic Dyn., 10 (2005), 39-58.  Google Scholar

[18]

Ph.D Thesis, University of Nice, 2002. Google Scholar

[19]

Physica D, 148 (2001), 97-135.  Google Scholar

[20]

Nuovo Cimento C, 22 (1999), 793-802. Google Scholar

[21]

Lecture Notes in Mathematics, 1160, Springer-Verlag, Berlin, 1985.  Google Scholar

[22]

Phys. Fluids, 21 (1978), 1092-1095. Google Scholar

[23]

Celest. Mech., 4 (1971), 99-109.  Google Scholar

[24]

SIAM J. Math. Anal., 19 (1988), 1295-1313.  Google Scholar

[25]

Nonlinearity, 10 (1997), 449-466.  Google Scholar

[26]

J. Montaldi, Bifurcations of relative equilibria near zero momentum in $\SO(3)$-symmetric Hamiltonian systems,, in preparation., ().   Google Scholar

[27]

J. Montaldi, Web pages,, \url{http://www.maths.manchester.ac.uk/jm/Vortices}, ().   Google Scholar

[28]

J. Nonlinear Sci., 9 (1999), 53-88.  Google Scholar

[29]

Phil. Trans. R. Soc. London Ser. A, 325 (1988), 237-293.  Google Scholar

[30]

Nonlinearity, 3 (1990), 695-730.  Google Scholar

[31]

SIAM J. on Applied Dynamical Systems, 2 (2003), 417-430.  Google Scholar

[32]

J. Montaldi and T. Tokieda, A family of point vortex systems,, in preparation., ().   Google Scholar

[33]

Applied Mathematical Sciences, 145, Springer-Verlag, New York, 2001.  Google Scholar

[34]

Ph.D Thesis, University of California, Santa Cruz, 1998. Google Scholar

[35]

Comm. Math. Phys., 69 (1979), 19-30.  Google Scholar

[36]

J. Geom. Phys., 9 (1992), 111-119.  Google Scholar

[37]

Math. Z., 232 (1999), 747-788.  Google Scholar

[38]

J. Fluid Mech., 255 (1993), 35-64.  Google Scholar

[39]

J. Math. Phys., 39 (1998), 5894-5907.  Google Scholar

[40]

Third revised edition, Hermann, Paris, 1978.  Google Scholar

[41]

J. Fluid Mech., 460 (2002), 83-92.  Google Scholar

[42]

C.R. Acad. Sci. Paris Série I Math., 333 (2001), 943-946.  Google Scholar

show all references

References:
[1]

Adv. Appl. Mech., 39 (2003), 1-79. Google Scholar

[2]

Fluid Dyn., 6 (1977), 863-870. Google Scholar

[3]

SIAM J. Appl. Math., 64 (2003), 216-230.  Google Scholar

[4]

in "Geometric Mechanics and Symmetry," Based on lectures by Montaldi, LMS Lecture Note Series, 306, Cambridge University Press, Cambridge, (2005), 357-402.  Google Scholar

[5]

Regular and Chaotic Dynamics, 8 (2003), 259-282.  Google Scholar

[6]

H. E. Cabral and D. S. Schmidt, Stability of relative equilibria in the problem of $N+1$ vortices,, SIAM J. Math. Anal., 31 (): 231.   Google Scholar

[7]

Arch. Ration. Mech. Anal., 163 (2002), 1-33. Correction to "Hamiltonian Hopf bifurcation with symmetry'', Arch. Ration. Mech. Anal., 167 (2002), 83-84.  Google Scholar

[8]

Nonlinearity, 15 (2002), 531-549.  Google Scholar

[9]

With an appendix by Jerrold Marsden, Physica D, 24 (1987), 391-405.  Google Scholar

[10]

English translation, On integrals of the hydrodynamical equations which express vortex motion, Phil. Mag., 33 (1867), 485-512. Google Scholar

[11]

Prentice-Hall, 1975. Google Scholar

[12]

Physica D, 116 (1998), 143-175.  Google Scholar

[13]

Kap.\ XX, Teubner, Leipzig, 1876. Google Scholar

[14]

Chaos, 14 (2004), 592-602.  Google Scholar

[15]

Nonlinearity, 15 (2002), 143-171.  Google Scholar

[16]

Nonlinearity, 17 (2004), 1989-2013.  Google Scholar

[17]

Regul. Chaotic Dyn., 10 (2005), 39-58.  Google Scholar

[18]

Ph.D Thesis, University of Nice, 2002. Google Scholar

[19]

Physica D, 148 (2001), 97-135.  Google Scholar

[20]

Nuovo Cimento C, 22 (1999), 793-802. Google Scholar

[21]

Lecture Notes in Mathematics, 1160, Springer-Verlag, Berlin, 1985.  Google Scholar

[22]

Phys. Fluids, 21 (1978), 1092-1095. Google Scholar

[23]

Celest. Mech., 4 (1971), 99-109.  Google Scholar

[24]

SIAM J. Math. Anal., 19 (1988), 1295-1313.  Google Scholar

[25]

Nonlinearity, 10 (1997), 449-466.  Google Scholar

[26]

J. Montaldi, Bifurcations of relative equilibria near zero momentum in $\SO(3)$-symmetric Hamiltonian systems,, in preparation., ().   Google Scholar

[27]

J. Montaldi, Web pages,, \url{http://www.maths.manchester.ac.uk/jm/Vortices}, ().   Google Scholar

[28]

J. Nonlinear Sci., 9 (1999), 53-88.  Google Scholar

[29]

Phil. Trans. R. Soc. London Ser. A, 325 (1988), 237-293.  Google Scholar

[30]

Nonlinearity, 3 (1990), 695-730.  Google Scholar

[31]

SIAM J. on Applied Dynamical Systems, 2 (2003), 417-430.  Google Scholar

[32]

J. Montaldi and T. Tokieda, A family of point vortex systems,, in preparation., ().   Google Scholar

[33]

Applied Mathematical Sciences, 145, Springer-Verlag, New York, 2001.  Google Scholar

[34]

Ph.D Thesis, University of California, Santa Cruz, 1998. Google Scholar

[35]

Comm. Math. Phys., 69 (1979), 19-30.  Google Scholar

[36]

J. Geom. Phys., 9 (1992), 111-119.  Google Scholar

[37]

Math. Z., 232 (1999), 747-788.  Google Scholar

[38]

J. Fluid Mech., 255 (1993), 35-64.  Google Scholar

[39]

J. Math. Phys., 39 (1998), 5894-5907.  Google Scholar

[40]

Third revised edition, Hermann, Paris, 1978.  Google Scholar

[41]

J. Fluid Mech., 460 (2002), 83-92.  Google Scholar

[42]

C.R. Acad. Sci. Paris Série I Math., 333 (2001), 943-946.  Google Scholar

[1]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001

[2]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3295-3317. doi: 10.3934/dcds.2020406

[3]

Jia Li, Junxiang Xu. On the reducibility of a class of almost periodic Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3905-3919. doi: 10.3934/dcdsb.2020268

[4]

Francisco Braun, Jaume Llibre, Ana Cristina Mereu. Isochronicity for trivial quintic and septic planar polynomial Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5245-5255. doi: 10.3934/dcds.2016029

[5]

Montserrat Corbera, Claudia Valls. Reversible polynomial Hamiltonian systems of degree 3 with nilpotent saddles. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3209-3233. doi: 10.3934/dcdsb.2020225

[6]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[7]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[8]

Yuzhou Tian, Yulin Zhao. Global phase portraits and bifurcation diagrams for reversible equivariant Hamiltonian systems of linear plus quartic homogeneous polynomials. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2941-2956. doi: 10.3934/dcdsb.2020214

[9]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[10]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[11]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[12]

Zhigang Pan, Yiqiu Mao, Quan Wang, Yuchen Yang. Transitions and bifurcations of Darcy-Brinkman-Marangoni convection. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021106

[13]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[14]

Yahui Niu. A Hopf type lemma and the symmetry of solutions for a class of Kirchhoff equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021027

[15]

Jiyu Zhong. Qualitative properties and bifurcations of a leaf-eating herbivores model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3381-3407. doi: 10.3934/dcdsb.2020236

[16]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[17]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[18]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[19]

Alexey Yulin, Alan Champneys. Snake-to-isola transition and moving solitons via symmetry-breaking in discrete optical cavities. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1341-1357. doi: 10.3934/dcdss.2011.4.1341

[20]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (11)

[Back to Top]