Citation: |
[1] |
H. Aref, P. Newton, M. Stremler, T. Tokieda and D. L. Vainchtein, Vortex crystals. Adv. Appl. Mech., 39 (2003), 1-79. |
[2] |
V. Bogomolov, Dynamics of vorticity at a sphere, Fluid Dyn., 6 (1977), 863-870. |
[3] |
S. Boatto and H. E. Cabral, Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating sphere, SIAM J. Appl. Math., 64 (2003), 216-230. |
[4] |
P.-L. Buono, F. Laurent-Polz and J. Montaldi, Symmetric Hamiltonian Bifurcations, in "Geometric Mechanics and Symmetry," Based on lectures by Montaldi, LMS Lecture Note Series, 306, Cambridge University Press, Cambridge, (2005), 357-402. |
[5] |
H. E. Cabral, K. R. Meyer and D. S. Schmidt, Stability and bifurcations for the $N+1$ vortex problem on the sphere, Regular and Chaotic Dynamics, 8 (2003), 259-282. |
[6] |
H. E. Cabral and D. S. Schmidt, Stability of relative equilibria in the problem of $N+1$ vortices, SIAM J. Math. Anal., 31 (1999/00), 231-250. |
[7] |
P. Chossat, J.-P. Ortega and T. Ratiu, Hamiltonian Hopf bifurcation with symmetry, Arch. Ration. Mech. Anal., 163 (2002), 1-33. Correction to "Hamiltonian Hopf bifurcation with symmetry'', Arch. Ration. Mech. Anal., 167 (2002), 83-84. |
[8] |
G. Derks and T. Ratiu, Unstable manifolds of relative equilibria in Hamiltonian systems with dissipation, Nonlinearity, 15 (2002), 531-549. |
[9] |
M. Golubitsky and I. Stewart, Generic bifurcation of Hamiltonian systems with symmetry, With an appendix by Jerrold Marsden, Physica D, 24 (1987), 391-405. |
[10] |
H. Helmholtz, Über Integrale der hydrodynamischen Gleichungen welche den Wirbelbewegungen entsprechen, Crelles J., 55 (1858), 25-55. English translation, On integrals of the hydrodynamical equations which express vortex motion, Phil. Mag., 33 (1867), 485-512. |
[11] |
E. Hansen, "A Table of Series and Products,'' Prentice-Hall, 1975. |
[12] |
R. Kidambi and P. Newton, Motion of three point vortices on a sphere, Physica D, 116 (1998), 143-175. |
[13] |
G. Kirchhoff, "Vorlesungen über Mathematische Physik, Mechanik,'' Kap.\ XX, Teubner, Leipzig, 1876. |
[14] |
L. G. Kurakin, On the nonlinear stability of the regular vortex systems on a sphere, Chaos, 14 (2004), 592-602. |
[15] |
F. Laurent-Polz, Point vortices on the sphere: A case with opposite vorticities, Nonlinearity, 15 (2002), 143-171. |
[16] |
F. Laurent-Polz, Relative periodic orbits in point vortex systems, Nonlinearity, 17 (2004), 1989-2013. |
[17] |
F. Laurent-Polz, Point vortices on a rotating sphere, Regul. Chaotic Dyn., 10 (2005), 39-58. |
[18] |
F. Laurent-Polz, "Etude Géométrique de la Dynamique de $N$ Tourbillons Ponctuels sur une Sphère,'' Ph.D Thesis, University of Nice, 2002. |
[19] |
C. Lim, J. Montaldi and M. Roberts, Relative equilibria of point vortices on the sphere, Physica D, 148 (2001), 97-135. |
[20] |
J. Marsden, S. Pekarsky and S. Shkoller, Stability of relative equilibria of point vortices on a sphere and symplectic integrators, Nuovo Cimento C, 22 (1999), 793-802. |
[21] |
J.-C. van der Meer, "The Hamiltonian Hopf Bifurcation,'' Lecture Notes in Mathematics, 1160, Springer-Verlag, Berlin, 1985. |
[22] |
G. J. Mertz, Stability of body-centered polygonal configurations of ideal vortices, Phys. Fluids, 21 (1978), 1092-1095. |
[23] |
K. R. Meyer and D. S. Schmidt, Periodic orbits near L4 for mass ratios near the critical mass ratio of Routh, Celest. Mech., 4 (1971), 99-109. |
[24] |
K. R. Meyer and D. S. Schmidt, Bifurcations of relative equilibria in the $N$-body and Kirchhoff problems, SIAM J. Math. Anal., 19 (1988), 1295-1313. |
[25] |
J. Montaldi, Persistence and stability of relative equilibria, Nonlinearity, 10 (1997), 449-466. |
[26] |
J. Montaldi, Bifurcations of relative equilibria near zero momentum in $\SO(3)$-symmetric Hamiltonian systems, in preparation. |
[27] |
J. Montaldi, Web pages, http://www.maths.manchester.ac.uk/jm/Vortices |
[28] |
J. Montaldi and M. Roberts, Relative equilibria of molecules, J. Nonlinear Sci., 9 (1999), 53-88. |
[29] |
J. Montaldi, M. Roberts and I. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems, Phil. Trans. R. Soc. London Ser. A, 325 (1988), 237-293. |
[30] |
J. Montaldi, M. Roberts and I. Stewart, Existence of nonlinear normal modes of symmetric Hamiltonian systems, Nonlinearity, 3 (1990), 695-730. |
[31] |
J. Montaldi, A. Soulière and T. Tokieda, Vortex dynamics on a cylinder, SIAM J. on Applied Dynamical Systems, 2 (2003), 417-430. |
[32] |
J. Montaldi and T. Tokieda, A family of point vortex systems, in preparation. |
[33] |
P. Newton, "The $N$-Vortex Problem. Analytical Techniques,'' Applied Mathematical Sciences, 145, Springer-Verlag, New York, 2001. |
[34] |
J.-P. Ortega, "Symmetry, Reduction, and Stability in Hamiltonian Systems,'' Ph.D Thesis, University of California, Santa Cruz, 1998. |
[35] |
R. Palais, Principle of symmetric criticality, Comm. Math. Phys., 69 (1979), 19-30. |
[36] |
G. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space, J. Geom. Phys., 9 (1992), 111-119. |
[37] |
G. Patrick, Dynamics near relative equilibria: Nongeneric momenta at a 1:1 group-reduced resonance, Math. Z., 232 (1999), 747-788. |
[38] |
L. Polvani and D. Dritschel, Wave and vortex dynamics on the surface of a sphere, J. Fluid Mech., 255 (1993), 35-64. |
[39] |
S. Pekarsky and J. Marsden, Point vortices on a sphere: Stability of relative equilibria, J. Math. Phys., 39 (1998), 5894-5907. |
[40] |
J.-P. Serre, "Représentations Linéaires des Groupes Finis,'' Third revised edition, Hermann, Paris, 1978. |
[41] |
A. Soulière and T. Tokieda, Periodic motions of vortices on surfaces with symmetry, J. Fluid Mech., 460 (2002), 83-92. |
[42] |
T. Tokieda, Tourbillons dansants, C.R. Acad. Sci. Paris Série I Math., 333 (2001), 943-946. |