December  2011, 3(4): 487-506. doi: 10.3934/jgm.2011.3.487

Covariantizing classical field theories

1. 

ICMAT (CSIC, UAM, UC3M, UCM), Departamento de Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, 28040 Madrid, Spain

2. 

Pacific Institute for the Mathematical Sciences, University of British Columbia, Vancouver, BC V6T 1Z2, Canada

Received  August 2010 Revised  January 2011 Published  February 2012

We show how to enlarge the covariance groups of a wide variety of classical field theories in such a way that the resulting ``covariantized'' theories are `essentially equivalent' to the originals. In particular, our technique will render many classical field theories generally covariant, that is, the covariantized theories will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kuchař. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and Stückelberg tricks.
Citation: Marco Castrillón López, Mark J. Gotay. Covariantizing classical field theories. Journal of Geometric Mechanics, 2011, 3 (4) : 487-506. doi: 10.3934/jgm.2011.3.487
References:
[1]

J. L. Anderson, "Principles of Relativity Physics,'', Academic Press, New York, 1967.

[2]

N. Banerjee, R. Banerjee and S. Ghosh, Quantisation of second class systems in the Batalin-Tyutin formalism, Annals of Physics, 241 (1995), 237-257. doi: 10.1006/aphy.1995.1062.

[3]

M. Castrillón López, M. J. Gotay and J. E. Marsden, Parametrization and stress-energy-momentum tensors in metric field theories, J. Phys. A, 41 (2008), 344002, 10 pp.

[4]

M. Castrillón López, M. J. Gotay and J. E. Marsden, Concatenating variational principles and the kinetic stress-energy-momentum tensor, in "Variations, Geometry and Physics" (eds. O. Krupková and D. J. Saunders), Nova Science Publishers, New York, (2009), 117-128.

[5]

M. Castrillón López and J. Muñoz Masqué, The geometry of the bundle of connections, Math. Z., 236 (2001), 797-811. doi: 10.1007/PL00004852.

[6]

P. A. M. Dirac, The Hamiltonian form of field dynamics, Can. J. Math., 3 (1951), 1-23. doi: 10.4153/CJM-1951-001-2.

[7]

P. A. M. Dirac, "Lectures on Quantum Mechanics," Academic Press, New York, 1964.

[8]

D. Freed, Classical Chern-Simons theory. I, Adv. Math., 113 (1995), 237-303. doi: 10.1006/aima.1995.1039.

[9]

D. Freed, Remarks on Chern-Simons theory, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 221-254.

[10]

P. L. García, Gauge algebras, curvature and symplectic structure, J. Diff. Geom., 12 (1977), 209-227.

[11]

M. J. Gotay, An exterior differential systems approach to the Cartan form, in "Symplectic Geometry and Mathematical Physics" (eds. P. Donato, C. Duval, J. Elhadad and G. M. Tuynman) (Aix-en-Provence, 1990), Progr. Math., 99, Birkhäuser Boston, Boston, MA, (1991), 160-188.

[12]

M. J. Gotay and J. E. Marsden, Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula, in "Mathematical Aspects of Classical Field Theory" (Seattle, WA, 1991), Contemp. Math., 132, Amer. Math. Soc., (1992), 367-392.

[13]

M. J. Gotay and J. E. Marsden, Momentum maps and classical fields, work in progress.

[14]

C. Isham and K. Kuchař, Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories, Annals of Physics, 164 (1985), 288-315. doi: 10.1016/0003-4916(85)90018-1.

[15]

B. Janssens, Bundles with a lift of infinitesimal diffeomorphismsarXiv:0911.3532, 39 pp.

[16]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry," Springer-Verlag, Berlin, 1993.

[17]

E. Kretschmann, Über den physikalischen Sinn der Relitivitätstheorie. A. Einsteins neue und seine ursprüngliche Relitivitätstheorie, Ann. Phys., Leipzig, 53 (1917), 575-614.

[18]

D. Krupka, O. Krupková and D. Saunders, The Cartan form and its generalizations in the calculus of variations, Int. J. of Geometric Methods in Modern Physics, 7 (2010), 631-654. doi: 10.1142/S0219887810004488.

[19]

K. Kuchař, Canonical quantization of gravity, in "Relativity, Astrophysics and Cosmology" (ed. W. Israel), Reidel, Dordrecht, (1973), 237-288.

[20]

K. Kuchař, Canonical quantization of generally covariant systems, in "Highlights in Gravitation and Cosmology: Proceedings of the International Conference" (eds. B. R. Iyer, A. Kembhavi, J. V. Narlikar and C. V. Vishveshwara), Cambridge University Press, Cambridge, (1988), 93-120.

[21]

C. Lanczos, "The Variational Principles of Mechanics," Fourth edition, Mathematical Expositions, No. 4, University of Toronto Press, Toronto, Ont., 1970.

[22]

M. Leok, "Foundations of Computational Geometric Mechanics," Dissertation (Ph.D.), California Institute of Technology. Available from: http://resolver.caltech.edu/CaltechETD:etd-03022004-000251.

[23]

J. E. Marsden and T. J. R. Hughes, "Mathematical Foundations of Elasticity," Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[24]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395. doi: 10.1007/s002200050505.

[25]

C. W. Misner, K. Thorne and J. A. Wheeler, "Gravitation," W. H. Freeman, San Francisco, 1973.

[26]

J. D. Norton, General covariance and the foundations of general relativity: Eight decades of dispute, Rep. Prog. Phys., 56 (1993), 791-858. doi: 10.1088/0034-4885/56/7/001.

[27]

P. J. Olver, "Applications of Lie Groups to Differential Equations," Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986.

[28]

E. J. Post, "Formal Structure of Electromagnetics: General Covariance and Electromagnetics," Dover, New York, 2007.

[29]

E. C. G. Stückelberg, Théorie de la radiation de photons de masse arbitrairement petite, Helv. Phys. Acta, 30 (1957), 209-215.

[30]

C. Tejero Prieto, Variational formulation of Chern-Simons theory for arbitrary Lie groups, J. Geom. Phys., 50 (2004), 138-161. doi: 10.1016/j.geomphys.2003.11.005.

[31]

R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. (2), 101 (1956), 1597-1607. doi: 10.1103/PhysRev.101.1597.

show all references

References:
[1]

J. L. Anderson, "Principles of Relativity Physics,'', Academic Press, New York, 1967.

[2]

N. Banerjee, R. Banerjee and S. Ghosh, Quantisation of second class systems in the Batalin-Tyutin formalism, Annals of Physics, 241 (1995), 237-257. doi: 10.1006/aphy.1995.1062.

[3]

M. Castrillón López, M. J. Gotay and J. E. Marsden, Parametrization and stress-energy-momentum tensors in metric field theories, J. Phys. A, 41 (2008), 344002, 10 pp.

[4]

M. Castrillón López, M. J. Gotay and J. E. Marsden, Concatenating variational principles and the kinetic stress-energy-momentum tensor, in "Variations, Geometry and Physics" (eds. O. Krupková and D. J. Saunders), Nova Science Publishers, New York, (2009), 117-128.

[5]

M. Castrillón López and J. Muñoz Masqué, The geometry of the bundle of connections, Math. Z., 236 (2001), 797-811. doi: 10.1007/PL00004852.

[6]

P. A. M. Dirac, The Hamiltonian form of field dynamics, Can. J. Math., 3 (1951), 1-23. doi: 10.4153/CJM-1951-001-2.

[7]

P. A. M. Dirac, "Lectures on Quantum Mechanics," Academic Press, New York, 1964.

[8]

D. Freed, Classical Chern-Simons theory. I, Adv. Math., 113 (1995), 237-303. doi: 10.1006/aima.1995.1039.

[9]

D. Freed, Remarks on Chern-Simons theory, Bull. Amer. Math. Soc. (N.S.), 46 (2009), 221-254.

[10]

P. L. García, Gauge algebras, curvature and symplectic structure, J. Diff. Geom., 12 (1977), 209-227.

[11]

M. J. Gotay, An exterior differential systems approach to the Cartan form, in "Symplectic Geometry and Mathematical Physics" (eds. P. Donato, C. Duval, J. Elhadad and G. M. Tuynman) (Aix-en-Provence, 1990), Progr. Math., 99, Birkhäuser Boston, Boston, MA, (1991), 160-188.

[12]

M. J. Gotay and J. E. Marsden, Stress-energy-momentum tensors and the Belinfante-Rosenfeld formula, in "Mathematical Aspects of Classical Field Theory" (Seattle, WA, 1991), Contemp. Math., 132, Amer. Math. Soc., (1992), 367-392.

[13]

M. J. Gotay and J. E. Marsden, Momentum maps and classical fields, work in progress.

[14]

C. Isham and K. Kuchař, Representations of spacetime diffeomorphisms. I. Canonical parametrized field theories, Annals of Physics, 164 (1985), 288-315. doi: 10.1016/0003-4916(85)90018-1.

[15]

B. Janssens, Bundles with a lift of infinitesimal diffeomorphismsarXiv:0911.3532, 39 pp.

[16]

I. Kolář, P. W. Michor and J. Slovák, "Natural Operations in Differential Geometry," Springer-Verlag, Berlin, 1993.

[17]

E. Kretschmann, Über den physikalischen Sinn der Relitivitätstheorie. A. Einsteins neue und seine ursprüngliche Relitivitätstheorie, Ann. Phys., Leipzig, 53 (1917), 575-614.

[18]

D. Krupka, O. Krupková and D. Saunders, The Cartan form and its generalizations in the calculus of variations, Int. J. of Geometric Methods in Modern Physics, 7 (2010), 631-654. doi: 10.1142/S0219887810004488.

[19]

K. Kuchař, Canonical quantization of gravity, in "Relativity, Astrophysics and Cosmology" (ed. W. Israel), Reidel, Dordrecht, (1973), 237-288.

[20]

K. Kuchař, Canonical quantization of generally covariant systems, in "Highlights in Gravitation and Cosmology: Proceedings of the International Conference" (eds. B. R. Iyer, A. Kembhavi, J. V. Narlikar and C. V. Vishveshwara), Cambridge University Press, Cambridge, (1988), 93-120.

[21]

C. Lanczos, "The Variational Principles of Mechanics," Fourth edition, Mathematical Expositions, No. 4, University of Toronto Press, Toronto, Ont., 1970.

[22]

M. Leok, "Foundations of Computational Geometric Mechanics," Dissertation (Ph.D.), California Institute of Technology. Available from: http://resolver.caltech.edu/CaltechETD:etd-03022004-000251.

[23]

J. E. Marsden and T. J. R. Hughes, "Mathematical Foundations of Elasticity," Prentice-Hall, Englewood Cliffs, New Jersey, 1983.

[24]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators, and nonlinear PDEs, Comm. Math. Phys., 199 (1998), 351-395. doi: 10.1007/s002200050505.

[25]

C. W. Misner, K. Thorne and J. A. Wheeler, "Gravitation," W. H. Freeman, San Francisco, 1973.

[26]

J. D. Norton, General covariance and the foundations of general relativity: Eight decades of dispute, Rep. Prog. Phys., 56 (1993), 791-858. doi: 10.1088/0034-4885/56/7/001.

[27]

P. J. Olver, "Applications of Lie Groups to Differential Equations," Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986.

[28]

E. J. Post, "Formal Structure of Electromagnetics: General Covariance and Electromagnetics," Dover, New York, 2007.

[29]

E. C. G. Stückelberg, Théorie de la radiation de photons de masse arbitrairement petite, Helv. Phys. Acta, 30 (1957), 209-215.

[30]

C. Tejero Prieto, Variational formulation of Chern-Simons theory for arbitrary Lie groups, J. Geom. Phys., 50 (2004), 138-161. doi: 10.1016/j.geomphys.2003.11.005.

[31]

R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. (2), 101 (1956), 1597-1607. doi: 10.1103/PhysRev.101.1597.

[1]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[2]

Jiakun Liu, Neil S. Trudinger. On the classical solvability of near field reflector problems. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 895-916. doi: 10.3934/dcds.2016.36.895

[3]

Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596-603. doi: 10.3934/proc.2003.2003.596

[4]

J. G. Ollason, N. Ren. A general dynamical theory of foraging in animals. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 713-720. doi: 10.3934/dcdsb.2004.4.713

[5]

Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 1-26. doi: 10.3934/jgm.2012.4.1

[6]

Narciso Román-Roy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113-137. doi: 10.3934/jgm.2011.3.113

[7]

Pedro Daniel Prieto-Martínez, Narciso Román-Roy. A new multisymplectic unified formalism for second order classical field theories. Journal of Geometric Mechanics, 2015, 7 (2) : 203-253. doi: 10.3934/jgm.2015.7.203

[8]

Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 17-50. doi: 10.3934/jcd.2016002

[9]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[10]

Maurizio Grasselli, Giulio Schimperna. Nonlocal phase-field systems with general potentials. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 5089-5106. doi: 10.3934/dcds.2013.33.5089

[11]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[12]

Valery Imaikin, Alexander Komech, Herbert Spohn. Scattering theory for a particle coupled to a scalar field. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 387-396. doi: 10.3934/dcds.2004.10.387

[13]

Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1

[14]

Santiago Capriotti. Dirac constraints in field theory and exterior differential systems. Journal of Geometric Mechanics, 2010, 2 (1) : 1-50. doi: 10.3934/jgm.2010.2.1

[15]

Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375

[16]

Katarzyna Grabowska, Janusz Grabowski. Tulczyjew triples: From statics to field theory. Journal of Geometric Mechanics, 2013, 5 (4) : 445-472. doi: 10.3934/jgm.2013.5.445

[17]

Sheng Zhang, Xiu Yang, Samy Tindel, Guang Lin. Augmented Gaussian random field: Theory and computation. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 931-957. doi: 10.3934/dcdss.2021098

[18]

Pierluigi Colli, Shunsuke Kurima. Time discretization of a nonlinear phase field system in general domains. Communications on Pure and Applied Analysis, 2019, 18 (6) : 3161-3179. doi: 10.3934/cpaa.2019142

[19]

Klaus Reiner Schenk-Hoppé. Random attractors--general properties, existence and applications to stochastic bifurcation theory. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 99-130. doi: 10.3934/dcds.1998.4.99

[20]

Shi Jin, Christof Sparber, Zhennan Zhou. On the classical limit of a time-dependent self-consistent field system: Analysis and computation. Kinetic and Related Models, 2017, 10 (1) : 263-298. doi: 10.3934/krm.2017011

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]