- Previous Article
- JGM Home
- This Issue
-
Next Article
Covariantizing classical field theories
A note on the Wehrheim-Woodward category
1. | Department of Mathematics, University of California, Berkeley, CA 94720, United States |
References:
[1] |
S. Benenti and V. M. Tulczyjew, Relazioni lineari binarie tra spazi vettoriali di dimensione finita, Memorie Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (5), 3 (1979), 67-113. |
[2] |
M. M. Cohen, "A Course in Simple-Homotopy Theory,'' Graduate Texts in Mathematics, 10, Springer-Verlag, New York-Berlin, 1973. |
[3] |
J. Rognes, Lecture notes on algebraic k-theory, April 29, 2010. Available from: http://folk.uio.no/rognes/kurs/mat9570v10/akt.pdf. |
[4] |
K. Wehrheim and C. T. Woodward, Functoriality for Lagrangian correspondences in Floer theory, Quantum Topology, 1 (2010), 129-170.
doi: 10.4171/QT/4. |
show all references
References:
[1] |
S. Benenti and V. M. Tulczyjew, Relazioni lineari binarie tra spazi vettoriali di dimensione finita, Memorie Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. (5), 3 (1979), 67-113. |
[2] |
M. M. Cohen, "A Course in Simple-Homotopy Theory,'' Graduate Texts in Mathematics, 10, Springer-Verlag, New York-Berlin, 1973. |
[3] |
J. Rognes, Lecture notes on algebraic k-theory, April 29, 2010. Available from: http://folk.uio.no/rognes/kurs/mat9570v10/akt.pdf. |
[4] |
K. Wehrheim and C. T. Woodward, Functoriality for Lagrangian correspondences in Floer theory, Quantum Topology, 1 (2010), 129-170.
doi: 10.4171/QT/4. |
[1] |
Zhihong Xia. Homoclinic points and intersections of Lagrangian submanifold. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 243-253. doi: 10.3934/dcds.2000.6.243 |
[2] |
Marie-Claude Arnaud. When are the invariant submanifolds of symplectic dynamics Lagrangian?. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1811-1827. doi: 10.3934/dcds.2014.34.1811 |
[3] |
Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367 |
[4] |
Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1429-1441. doi: 10.3934/dcdss.2011.4.1429 |
[5] |
Umesh V. Dubey, Vivek M. Mallick. Spectrum of some triangulated categories. Electronic Research Announcements, 2011, 18: 50-53. doi: 10.3934/era.2011.18.50 |
[6] |
G. Mashevitzky, B. Plotkin and E. Plotkin. Automorphisms of categories of free algebras of varieties. Electronic Research Announcements, 2002, 8: 1-10. |
[7] |
Jiangsheng Hu, Dongdong Zhang, Tiwei Zhao, Panyue Zhou. Balance of complete cohomology in extriangulated categories. Electronic Research Archive, 2021, 29 (5) : 3341-3359. doi: 10.3934/era.2021042 |
[8] |
Ali Aytekin, Kadir Emir. Colimits of crossed modules in modified categories of interest. Electronic Research Archive, 2020, 28 (3) : 1227-1238. doi: 10.3934/era.2020067 |
[9] |
Uta Renata Freiberg. Einstein relation on fractal objects. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 509-525. doi: 10.3934/dcdsb.2012.17.509 |
[10] |
David Bechara Senior, Umberto L. Hryniewicz, Pedro A. S. Salomão. On the relation between action and linking. Journal of Modern Dynamics, 2021, 17: 319-336. doi: 10.3934/jmd.2021011 |
[11] |
Stephen Doty and Anthony Giaquinto. Generators and relations for Schur algebras. Electronic Research Announcements, 2001, 7: 54-62. |
[12] |
Alexander Sakhnovich. Dynamical canonical systems and their explicit solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1679-1689. doi: 10.3934/dcds.2017069 |
[13] |
Nikita Selinger. Topological characterization of canonical Thurston obstructions. Journal of Modern Dynamics, 2013, 7 (1) : 99-117. doi: 10.3934/jmd.2013.7.99 |
[14] |
Peter Scott and Gadde A. Swarup. Regular neighbourhoods and canonical decompositions for groups. Electronic Research Announcements, 2002, 8: 20-28. |
[15] |
Vladimir Lazić, Fanjun Meng. On Nonvanishing for uniruled log canonical pairs. Electronic Research Archive, 2021, 29 (5) : 3297-3308. doi: 10.3934/era.2021039 |
[16] |
Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu. A final size relation for epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 159-175. doi: 10.3934/mbe.2007.4.159 |
[17] |
Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009 |
[18] |
Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018 |
[19] |
Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253 |
[20] |
E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics and Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010 |
2020 Impact Factor: 0.857
Tools
Metrics
Other articles
by authors
[Back to Top]