March  2011, 3(1): 81-111. doi: 10.3934/jgm.2011.3.81

A theoretical framework for backward error analysis on manifolds

1. 

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA, United Kingdom

Received  September 2010 Revised  March 2011 Published  April 2011

Backward Error Analysis (BEA) has been a crucial tool when analyzing long-time behavior of numerical integrators, in particular, one is interested in the geometric properties of the perturbed vector field that a numerical integrator generates. In this article we present a new framework for BEA on manifolds. We extend the previously known "exponentially close" estimates from $\mathbb{R}^n$ to smooth manifolds and also provide an abstract theory for classifications of numerical integrators in terms of their geometric properties. Classification theorems of type "symplectic integrators generate symplectic perturbed vector fields" are known to be true in $\mathbb{R}^n.$ We present a general theory for proving such theorems on manifolds by looking at the preservation of smooth $k$-forms on manifolds by the pull-back of a numerical integrator. This theory is related to classification theory of subgroups of diffeomorphisms. We also look at other subsets of diffeomorphisms that occur in the classification theory of numerical integrators. Typically these subsets are anti-fixed points of group homomorphisms.
Citation: Anders C. Hansen. A theoretical framework for backward error analysis on manifolds. Journal of Geometric Mechanics, 2011, 3 (1) : 81-111. doi: 10.3934/jgm.2011.3.81
References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications," volume 75 of "Applied Mathematical Sciences,", Springer-Verlag, (1988).   Google Scholar

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," volume 60 of "Graduate Texts in Mathematics,", Springer-Verlag, (1989).   Google Scholar

[3]

G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms,, J. Statist. Phys., 74 (1994), 1117.  doi: 10.1007/BF02188219.  Google Scholar

[4]

M. P. Calvo, A. Murua and J. M. Sanz-Serna, Modified equations for ODEs,, In, 172 (1993), 63.   Google Scholar

[5]

E. Cartan, Les groupes de transformations continus, infinis, simples,, Ann. Sci. École Norm. Sup. (3), 26 (1909), 93.   Google Scholar

[6]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[7]

O. Gonzalez, D. J. Higham and A. M. Stuart, Qualitative properties of modified equations,, IMA J. Numer. Anal., 19 (1999), 169.  doi: 10.1093/imanum/19.2.169.  Google Scholar

[8]

E. Hairer, Global modified Hamiltonian for constrained symplectic integrators,, Numer. Math., 95 (2003), 325.  doi: 10.1007/s00211-002-0428-7.  Google Scholar

[9]

E. Hairer and C. Lubich, The life-span of backward error analysis for numerical integrators,, Numer. Math., 76 (1997), 441.  doi: 10.1007/s002110050271.  Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration," volume 31 of "Springer Series in Computational Mathematics,", Springer Series in Computational Mathematics, 31 (2002).   Google Scholar

[11]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I," volume 8 of "Springer Series in Computational Mathematics,", Springer Series in Computational Mathematics, 8 (1993).   Google Scholar

[12]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods,, Acta Numerica, 2000, 9 (2000), 215.   Google Scholar

[13]

J. M. Lee, "Introduction to Smooth Manifolds," volume 218 of "Graduate Texts in Mathematics,", Graduate Texts in Mathematics, 218 (2003).   Google Scholar

[14]

R. I. McLachlan and G. R. W. Quispel, Splitting methods,, Acta Numer., 11 (2002), 341.  doi: 10.1017/S0962492902000053.  Google Scholar

[15]

H. Omori, "Infinite-dimensional Lie Groups," volume 158 of "Translations of Mathematical Monographs,", Translations of Mathematical Monographs, 158 (1997).   Google Scholar

[16]

R. S. Palais, "Foundations of Global Non-linear Analysis,", Foundations of Global Non-linear Analysis, (1968).   Google Scholar

[17]

S. Reich, "Numerical Integration of the Generatized Euler Equations,", Technical report, (1993).   Google Scholar

[18]

S. Reich, On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems,, Numer. Math., 76 (1997), 231.  doi: 10.1007/s002110050261.  Google Scholar

[19]

S. Reich, Backward error analysis for numerical integrators,, SIAM J. Numer. Anal., 36 (1999), 1549.  doi: 10.1137/S0036142997329797.  Google Scholar

[20]

R. Schmid, Infinite-dimensional Lie groups with applications to mathematical physics,, J. Geom. Symmetry Phys., 1 (2004), 54.   Google Scholar

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. Ratiu, "Manifolds, Tensor Analysis, and Applications," volume 75 of "Applied Mathematical Sciences,", Springer-Verlag, (1988).   Google Scholar

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," volume 60 of "Graduate Texts in Mathematics,", Springer-Verlag, (1989).   Google Scholar

[3]

G. Benettin and A. Giorgilli, On the Hamiltonian interpolation of near-to-the-identity symplectic mappings with application to symplectic integration algorithms,, J. Statist. Phys., 74 (1994), 1117.  doi: 10.1007/BF02188219.  Google Scholar

[4]

M. P. Calvo, A. Murua and J. M. Sanz-Serna, Modified equations for ODEs,, In, 172 (1993), 63.   Google Scholar

[5]

E. Cartan, Les groupes de transformations continus, infinis, simples,, Ann. Sci. École Norm. Sup. (3), 26 (1909), 93.   Google Scholar

[6]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the notion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[7]

O. Gonzalez, D. J. Higham and A. M. Stuart, Qualitative properties of modified equations,, IMA J. Numer. Anal., 19 (1999), 169.  doi: 10.1093/imanum/19.2.169.  Google Scholar

[8]

E. Hairer, Global modified Hamiltonian for constrained symplectic integrators,, Numer. Math., 95 (2003), 325.  doi: 10.1007/s00211-002-0428-7.  Google Scholar

[9]

E. Hairer and C. Lubich, The life-span of backward error analysis for numerical integrators,, Numer. Math., 76 (1997), 441.  doi: 10.1007/s002110050271.  Google Scholar

[10]

E. Hairer, C. Lubich and G. Wanner, "Geometric Numerical Integration," volume 31 of "Springer Series in Computational Mathematics,", Springer Series in Computational Mathematics, 31 (2002).   Google Scholar

[11]

E. Hairer, S. P. Nørsett and G. Wanner, "Solving Ordinary Differential Equations. I," volume 8 of "Springer Series in Computational Mathematics,", Springer Series in Computational Mathematics, 8 (1993).   Google Scholar

[12]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods,, Acta Numerica, 2000, 9 (2000), 215.   Google Scholar

[13]

J. M. Lee, "Introduction to Smooth Manifolds," volume 218 of "Graduate Texts in Mathematics,", Graduate Texts in Mathematics, 218 (2003).   Google Scholar

[14]

R. I. McLachlan and G. R. W. Quispel, Splitting methods,, Acta Numer., 11 (2002), 341.  doi: 10.1017/S0962492902000053.  Google Scholar

[15]

H. Omori, "Infinite-dimensional Lie Groups," volume 158 of "Translations of Mathematical Monographs,", Translations of Mathematical Monographs, 158 (1997).   Google Scholar

[16]

R. S. Palais, "Foundations of Global Non-linear Analysis,", Foundations of Global Non-linear Analysis, (1968).   Google Scholar

[17]

S. Reich, "Numerical Integration of the Generatized Euler Equations,", Technical report, (1993).   Google Scholar

[18]

S. Reich, On higher-order semi-explicit symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems,, Numer. Math., 76 (1997), 231.  doi: 10.1007/s002110050261.  Google Scholar

[19]

S. Reich, Backward error analysis for numerical integrators,, SIAM J. Numer. Anal., 36 (1999), 1549.  doi: 10.1137/S0036142997329797.  Google Scholar

[20]

R. Schmid, Infinite-dimensional Lie groups with applications to mathematical physics,, J. Geom. Symmetry Phys., 1 (2004), 54.   Google Scholar

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[6]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[7]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[14]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[15]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[16]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[17]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[18]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[19]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[20]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]