June  2012, 4(2): 111-127. doi: 10.3934/jgm.2012.4.111

Symmetries and reduction of multiplicative 2-forms

1. 

Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, Rio de Janeiro, 22460-320, Brazil

2. 

Departamento de Matemática Aplicada, Instituto de Matemática, Universidade Federal do Rio de Janeiro, CEP 21941-909, Rio de Janeiro - RJ, Brazil

Received  March 2011 Revised  July 2011 Published  August 2012

This paper is concerned with symmetries of closed multiplicative 2-forms on Lie groupoids and their infinitesimal counterparts. We use them to study Lie group actions on Dirac manifolds by Dirac diffeomorphisms and their lifts to presymplectic groupoids, building on recent work of Fernandes-Ortega-Ratiu [11] on Poisson actions.
Citation: Henrique Bursztyn, Alejandro Cabrera. Symmetries and reduction of multiplicative 2-forms. Journal of Geometric Mechanics, 2012, 4 (2) : 111-127. doi: 10.3934/jgm.2012.4.111
References:
[1]

C. Arias Abad and M. Crainic, The Weil algebra and the Van Est isomorphism,, Ann. Inst. Fourier, 61 (2011), 927.   Google Scholar

[2]

H. Bursztyn and A. Cabrera, Multiplicative forms at the infinitesimal level,, Math. Annalen, 353 (2012), 663.   Google Scholar

[3]

H. Bursztyn, A. Cabrera and C. Ortiz, Linear and multiplicative 2-forms,, Lett. Math. Phys., 90 (2009), 59.  doi: 10.1007/s11005-009-0349-9.  Google Scholar

[4]

H. Bursztyn, G. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures,, Advances in Math., 211 (2007), 726.  doi: 10.1016/j.aim.2006.09.008.  Google Scholar

[5]

H. Bursztyn, M. Crainic, A. Weinstein and C. Zhu, Integration of twisted Dirac brackets,, Duke Math. J., 123 (2004), 549.  doi: 10.1215/S0012-7094-04-12335-8.  Google Scholar

[6]

A. Cattaneo and G. Felder, Poisson sigma models and symplectic groupoids,, in, 198 (2001), 61.   Google Scholar

[7]

A. Coste, P. Dazord and A. Weinstein, Groupoïdes symplectiques,, in, 87-2 (1987), 87.   Google Scholar

[8]

T. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[9]

M. Crainic and R. Fernandes, Integrability of Lie brackets,, Ann.of Math. (2), 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[10]

M. Crainic and R. Fernandes, Integrability of Poisson brackets,, J. Differential Geom., 66 (2004), 71.   Google Scholar

[11]

R. Fernandes, J.-P. Ortega and T. Ratiu, The momentum map in Poisson geometry,, Amer. J. of Math., 131 (2009), 1261.  doi: 10.1353/ajm.0.0068.  Google Scholar

[12]

M. Jotz and T. Ratiu, Induced Dirac structures on isotropy type manifolds,, Transform. Groups, 16 (2011), 175.  doi: 10.1007/s00031-011-9123-z.  Google Scholar

[13]

M. Jotz, T. Ratiu and J. Sniatycki, Singular reduction of Dirac structures,, Trans. Amer. Math. Soc., 363 (2011), 2967.  doi: 10.1090/S0002-9947-2011-05220-7.  Google Scholar

[14]

, J.-H. Lu,, private communication., ().   Google Scholar

[15]

K. Mackenzie and P. Xu, Classical lifting processes and multiplicative vector fields,, Quart. J. Math. Oxford Ser. (2), 49 (1998), 59.   Google Scholar

[16]

K. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445.  doi: 10.1016/S0040-9383(98)00069-X.  Google Scholar

[17]

K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoids,, Publ. Res. Inst. Math. Sci., 24 (1988), 121.  doi: 10.2977/prims/1195175328.  Google Scholar

[18]

I. Moerdijk and J. Mrcun, On the integrability of Lie subalgebroids,, Adv. Math., 204 (2006), 101.  doi: 10.1016/j.aim.2005.05.011.  Google Scholar

[19]

P. Ševera, Some title containing the words "homotopy'' and"symplectic'', e.g. this one,, in, (2005), 121.   Google Scholar

[20]

A. Weinstein, Symplectic groupoids and Poisson manifolds,, Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101.   Google Scholar

show all references

References:
[1]

C. Arias Abad and M. Crainic, The Weil algebra and the Van Est isomorphism,, Ann. Inst. Fourier, 61 (2011), 927.   Google Scholar

[2]

H. Bursztyn and A. Cabrera, Multiplicative forms at the infinitesimal level,, Math. Annalen, 353 (2012), 663.   Google Scholar

[3]

H. Bursztyn, A. Cabrera and C. Ortiz, Linear and multiplicative 2-forms,, Lett. Math. Phys., 90 (2009), 59.  doi: 10.1007/s11005-009-0349-9.  Google Scholar

[4]

H. Bursztyn, G. Cavalcanti and M. Gualtieri, Reduction of Courant algebroids and generalized complex structures,, Advances in Math., 211 (2007), 726.  doi: 10.1016/j.aim.2006.09.008.  Google Scholar

[5]

H. Bursztyn, M. Crainic, A. Weinstein and C. Zhu, Integration of twisted Dirac brackets,, Duke Math. J., 123 (2004), 549.  doi: 10.1215/S0012-7094-04-12335-8.  Google Scholar

[6]

A. Cattaneo and G. Felder, Poisson sigma models and symplectic groupoids,, in, 198 (2001), 61.   Google Scholar

[7]

A. Coste, P. Dazord and A. Weinstein, Groupoïdes symplectiques,, in, 87-2 (1987), 87.   Google Scholar

[8]

T. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[9]

M. Crainic and R. Fernandes, Integrability of Lie brackets,, Ann.of Math. (2), 157 (2003), 575.  doi: 10.4007/annals.2003.157.575.  Google Scholar

[10]

M. Crainic and R. Fernandes, Integrability of Poisson brackets,, J. Differential Geom., 66 (2004), 71.   Google Scholar

[11]

R. Fernandes, J.-P. Ortega and T. Ratiu, The momentum map in Poisson geometry,, Amer. J. of Math., 131 (2009), 1261.  doi: 10.1353/ajm.0.0068.  Google Scholar

[12]

M. Jotz and T. Ratiu, Induced Dirac structures on isotropy type manifolds,, Transform. Groups, 16 (2011), 175.  doi: 10.1007/s00031-011-9123-z.  Google Scholar

[13]

M. Jotz, T. Ratiu and J. Sniatycki, Singular reduction of Dirac structures,, Trans. Amer. Math. Soc., 363 (2011), 2967.  doi: 10.1090/S0002-9947-2011-05220-7.  Google Scholar

[14]

, J.-H. Lu,, private communication., ().   Google Scholar

[15]

K. Mackenzie and P. Xu, Classical lifting processes and multiplicative vector fields,, Quart. J. Math. Oxford Ser. (2), 49 (1998), 59.   Google Scholar

[16]

K. Mackenzie and P. Xu, Integration of Lie bialgebroids,, Topology, 39 (2000), 445.  doi: 10.1016/S0040-9383(98)00069-X.  Google Scholar

[17]

K. Mikami and A. Weinstein, Moments and reduction for symplectic groupoids,, Publ. Res. Inst. Math. Sci., 24 (1988), 121.  doi: 10.2977/prims/1195175328.  Google Scholar

[18]

I. Moerdijk and J. Mrcun, On the integrability of Lie subalgebroids,, Adv. Math., 204 (2006), 101.  doi: 10.1016/j.aim.2005.05.011.  Google Scholar

[19]

P. Ševera, Some title containing the words "homotopy'' and"symplectic'', e.g. this one,, in, (2005), 121.   Google Scholar

[20]

A. Weinstein, Symplectic groupoids and Poisson manifolds,, Bull. Amer. Math. Soc. (N.S.), 16 (1987), 101.   Google Scholar

[1]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[2]

Hiroaki Yoshimura, Jerrold E. Marsden. Dirac cotangent bundle reduction. Journal of Geometric Mechanics, 2009, 1 (1) : 87-158. doi: 10.3934/jgm.2009.1.87

[3]

Leonardo Colombo, David Martín de Diego. Second-order variational problems on Lie groupoids and optimal control applications. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6023-6064. doi: 10.3934/dcds.2016064

[4]

Víctor Manuel Jiménez Morales, Manuel De León, Marcelo Epstein. Lie groupoids and algebroids applied to the study of uniformity and homogeneity of material bodies. Journal of Geometric Mechanics, 2019, 11 (3) : 301-324. doi: 10.3934/jgm.2019017

[5]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[6]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[7]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[8]

Luciana A. Alves, Luiz A. B. San Martin. Multiplicative ergodic theorem on flag bundles of semi-simple Lie groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1247-1273. doi: 10.3934/dcds.2013.33.1247

[9]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[10]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[11]

David Blázquez-Sanz, Juan J. Morales-Ruiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 353-379. doi: 10.3934/dcds.2012.32.353

[12]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[13]

Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165

[14]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[15]

Robert Lauter and Victor Nistor. On spectra of geometric operators on open manifolds and differentiable groupoids. Electronic Research Announcements, 2001, 7: 45-53.

[16]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

[17]

María Barbero Liñán, Hernán Cendra, Eduardo García Toraño, David Martín de Diego. Morse families and Dirac systems. Journal of Geometric Mechanics, 2019, 11 (4) : 487-510. doi: 10.3934/jgm.2019024

[18]

Gennady Bachman. Exponential sums with multiplicative coefficients. Electronic Research Announcements, 1999, 5: 128-135.

[19]

M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313-332. doi: 10.3934/jgm.2012.4.313

[20]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]