June  2012, 4(2): 129-136. doi: 10.3934/jgm.2012.4.129

Linear weakly Noetherian constants of motion are horizontal gauge momenta

1. 

Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova

2. 

Università di Verona, Dipartimento di Informatica, Cà Vignal 2, Strada Le Grazie 15, 37134 Verona

Received  October 2010 Revised  March 2011 Published  August 2012

noindent The notion of gauge momenta is a generalization of the momentum map which is relevant for nonholonomic systems with symmetry. Weakly Noetherian functions are functions which are constants of motion of all 'natural' nonholonomic systems with a given kinetic energy and any $G$-invariant potential energy. We show that, when the action of the symmetry group on the configuration manifold is free and proper, a function which is linear in the velocities is weakly-Noetherian if anf only if it is a gauge momenta which has a horizontal generator.
Citation: Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. Linear weakly Noetherian constants of motion are horizontal gauge momenta. Journal of Geometric Mechanics, 2012, 4 (2) : 129-136. doi: 10.3934/jgm.2012.4.129
References:
[1]

C. Agostinelli, Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocità lagrangiane,, Boll. Un. Mat. Ital. (3), 11 (1956), 1.   Google Scholar

[2]

L. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems,, Rep. Math. Phys., 37 (1996), 295.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[3]

S. Benenti, A 'user-friendly' approach to the dynamical equations of non-holonomic systems,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).   Google Scholar

[4]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[5]

A. M. Bloch, "Nonholonomic Mechanics and Controls,'', Interdisciplinary Applied Mathematics, 24 (2003).  doi: 10.1007/b97376.  Google Scholar

[6]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[7]

F. Cantrjn, M. de León, M. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries,, Rep. Math. Phys., 42 (1998), 25.  doi: 10.1016/S0034-4877(98)80003-7.  Google Scholar

[8]

F. Cantrjn, J. Cortés, M. de León and M. de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Cambridge Phil. Soc., 132 (2002), 323.   Google Scholar

[9]

R. Cushman, D. Kemppainen, J. Śniatycki and L. Bates, Geometry of nonholonomic constraints,, Proceedings of the XXVII Symposium on Mathematical Physics (Toruń, 36 (1995), 275.  doi: 10.1016/0034-4877(96)83625-1.  Google Scholar

[10]

M. de León, J. C. Marrero and D. Martín de Diego, Mechanical systems with nonlinear constraints,, Int. J. Th. Phys., 36 (1997), 979.  doi: 10.1007/BF02435796.  Google Scholar

[11]

F. Fassò, A. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions,, Reg. Ch. Dyn., 12 (2007), 579.  doi: 10.1134/S1560354707060019.  Google Scholar

[12]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics,, Rep. Math. Phys., 62 (2008), 345.  doi: 10.1016/S0034-4877(09)00005-6.  Google Scholar

[13]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems,, J. Geom. Mech., 1 (2009), 389.   Google Scholar

[14]

Il. Iliev and Khr. Semerdzhiev, Relations between the first integrals of a nonholonomic mechanical system and of the corresponding system freed of constraints,, J. Appl. Math. Mech., 36 (1972), 381.  doi: 10.1016/0021-8928(72)90049-4.  Google Scholar

[15]

Il. Iliev and P. Ilija, On first integrals of a nonholonomic mechanical system,, J. Appl. Math. Mech., 39 (1975), 147.  doi: 10.1016/0021-8928(75)90046-5.  Google Scholar

[16]

J. Koiller, Reduction of some classical nonholonomic systems with symmetry,, Arch. Rat. Mech. An., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints,, in, 59 (2003), 223.   Google Scholar

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,'', Progress in Mathematics, 222 (2004).   Google Scholar

[19]

J. Śniatycki, Nonholonomic Noether theorem and reduction of symmetries,, Rep. Math. Phys., 42 (1998), 5.  doi: 10.1016/S0034-4877(98)80002-5.  Google Scholar

[20]

D. V. Zenkov, Linear conservation laws of nonholonomic systems with symmetry,, in, 2003 (2002), 967.   Google Scholar

show all references

References:
[1]

C. Agostinelli, Nuova forma sintetica delle equazioni del moto di un sistema anolonomo ed esistenza di un integrale lineare nelle velocità lagrangiane,, Boll. Un. Mat. Ital. (3), 11 (1956), 1.   Google Scholar

[2]

L. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems,, Rep. Math. Phys., 37 (1996), 295.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[3]

S. Benenti, A 'user-friendly' approach to the dynamical equations of non-holonomic systems,, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007).   Google Scholar

[4]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rational Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[5]

A. M. Bloch, "Nonholonomic Mechanics and Controls,'', Interdisciplinary Applied Mathematics, 24 (2003).  doi: 10.1007/b97376.  Google Scholar

[6]

A. M. Bloch, J. E. Marsden and D. V. Zenkov, Quasivelocities and symmetries in non-holonomic systems,, Dynamical Systems, 24 (2009), 187.  doi: 10.1080/14689360802609344.  Google Scholar

[7]

F. Cantrjn, M. de León, M. de Diego and J. Marrero, Reduction of nonholonomic mechanical systems with symmetries,, Rep. Math. Phys., 42 (1998), 25.  doi: 10.1016/S0034-4877(98)80003-7.  Google Scholar

[8]

F. Cantrjn, J. Cortés, M. de León and M. de Diego, On the geometry of generalized Chaplygin systems,, Math. Proc. Cambridge Phil. Soc., 132 (2002), 323.   Google Scholar

[9]

R. Cushman, D. Kemppainen, J. Śniatycki and L. Bates, Geometry of nonholonomic constraints,, Proceedings of the XXVII Symposium on Mathematical Physics (Toruń, 36 (1995), 275.  doi: 10.1016/0034-4877(96)83625-1.  Google Scholar

[10]

M. de León, J. C. Marrero and D. Martín de Diego, Mechanical systems with nonlinear constraints,, Int. J. Th. Phys., 36 (1997), 979.  doi: 10.1007/BF02435796.  Google Scholar

[11]

F. Fassò, A. Ramos and N. Sansonetto, The reaction-annihilator distribution and the nonholonomic Noether theorem for lifted actions,, Reg. Ch. Dyn., 12 (2007), 579.  doi: 10.1134/S1560354707060019.  Google Scholar

[12]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics,, Rep. Math. Phys., 62 (2008), 345.  doi: 10.1016/S0034-4877(09)00005-6.  Google Scholar

[13]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems,, J. Geom. Mech., 1 (2009), 389.   Google Scholar

[14]

Il. Iliev and Khr. Semerdzhiev, Relations between the first integrals of a nonholonomic mechanical system and of the corresponding system freed of constraints,, J. Appl. Math. Mech., 36 (1972), 381.  doi: 10.1016/0021-8928(72)90049-4.  Google Scholar

[15]

Il. Iliev and P. Ilija, On first integrals of a nonholonomic mechanical system,, J. Appl. Math. Mech., 39 (1975), 147.  doi: 10.1016/0021-8928(75)90046-5.  Google Scholar

[16]

J. Koiller, Reduction of some classical nonholonomic systems with symmetry,, Arch. Rat. Mech. An., 118 (1992), 113.  doi: 10.1007/BF00375092.  Google Scholar

[17]

C.-M. Marle, On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints,, in, 59 (2003), 223.   Google Scholar

[18]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,'', Progress in Mathematics, 222 (2004).   Google Scholar

[19]

J. Śniatycki, Nonholonomic Noether theorem and reduction of symmetries,, Rep. Math. Phys., 42 (1998), 5.  doi: 10.1016/S0034-4877(98)80002-5.  Google Scholar

[20]

D. V. Zenkov, Linear conservation laws of nonholonomic systems with symmetry,, in, 2003 (2002), 967.   Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[2]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[3]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[4]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[5]

Xianbo Sun, Zhanbo Chen, Pei Yu. Parameter identification on Abelian integrals to achieve Chebyshev property. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020375

[6]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Hua Zhong, Xiaolin Fan, Shuyu Sun. The effect of surface pattern property on the advancing motion of three-dimensional droplets. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020366

[9]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[10]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[11]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

[12]

Yuyuan Ouyang, Trevor Squires. Some worst-case datasets of deterministic first-order methods for solving binary logistic regression. Inverse Problems & Imaging, 2021, 15 (1) : 63-77. doi: 10.3934/ipi.2020047

[13]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[14]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[15]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[16]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[17]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[18]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[19]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[20]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (6)

[Back to Top]