Citation: |
[1] |
A. M. Bloch, "Nonholonomic Mechanics and Control,'' Interdisciplinary Applied Mathematics, 24, Systems and Control, Springer-Verlag, New York, 2003. |
[2] |
A. M. Bloch, O. E. Fernandez and T. Mestdag, Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations, Rep. Math. Phys., 63 (2009), 225-249.doi: 10.1016/S0034-4877(09)90001-5. |
[3] |
A. V. Borisov and I. S. Mamaev, Rolling of a rigid body on plane and sphere. Hierarchy of dynamics, Reg. Chaotic Dyn., 7 (2002), 177-200. |
[4] |
A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems, Reg. Chaotic Dyn., 13 (2008), 443-490.doi: 10.1134/S1560354708050079. |
[5] |
R. L. Burden and J. D. Faires, "Numerical Analysis,'' 8th edition, Thomson Brooks/Cole, Belmont, CA, 2005. |
[6] |
S. A. Chaplygin, On a ball's rolling on a horizontal plane, (in Russian), Mat. Sbornik, 24 (1903), 139-168; (in English), Reg. Chaotic Dyn., 7 (2002), 131-148. |
[7] |
S. A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multiplier theorem, (in Russian), Mat. Sbornik, 28 (1911), 303-314; (in English), Reg. Chaotic Dyn., 13 (2008), 369-376. |
[8] |
J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'' Lecture Notes in Mathematics, 1793, Springer-Verlag, Berlin, 2002. |
[9] |
J. Cortés Monforte and S. Martĺnez, Nonholonomic integrators, Nonlinearity, 14 (2001), 1365-1392.doi: 10.1088/0951-7715/14/5/322. |
[10] |
Y. N. Fedorov and B. Jovanović, Quasi-Chaplygin systems and nonholonomic rigid body dynamics, Lett. Math. Phys., 76 (2006), 215-230.doi: 10.1007/s11005-006-0069-3. |
[11] |
Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie Groups, Nonlinearity, 18 (2005), 2211-2241.doi: 10.1088/0951-7715/18/5/017. |
[12] |
O. E. Fernandez, "The Hamiltonization of Nonholonomic Systems and its Applications,'' Ph.D. Thesis, The University of Michigan, 2009. |
[13] |
O. E. Fernandez and A. M. Bloch, The Weitzenböck connection and time reparameterization in nonholonomic mechanics, J. Math. Phys., 52 (2011), 012901, 18 pp.doi: 10.1063/1.3525798. |
[14] |
O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data, J. Phys. A, 41 (2008), 344005, 20 pp.doi: 10.1088/1751-8113/41/34/344005. |
[15] |
O. E. Fernandez, T. Mestdag and A. M. Bloch, A generalization of Chaplygin's reducibility theorem, Reg. Chaotic Dyn., 14 (2009), 635-655.doi: 10.1134/S1560354709060033. |
[16] |
P. Fitzpatrick, "Advanced Calculus,'' 2nd edition, Thomson Brooks/Cole, Belmont, CA, 2006. |
[17] |
M. R. Flannery, The enigma of nonholonomic constraints, Am. J. of Phys., 73 (2005), 265-272.doi: 10.1119/1.1830501. |
[18] |
Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators, Phys. Lett. A, 133 (1988), 134-139.doi: 10.1016/0375-9601(88)90773-6. |
[19] |
E. Hairer, Variable time step integration with symplectic methods, Appl. Numer. Math., 25 (1997), 219-227.doi: 10.1016/S0168-9274(97)00061-5. |
[20] |
D. Iglesias, J. C. Marrero, D. M. de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci., 18 (2008), 221-276.doi: 10.1007/s00332-007-9012-8. |
[21] |
M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries, Discrete and Continuous Dynamical Systems, Series S, 3 (2010), 61-84. |
[22] |
D. Korteweg, Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung und insbesondere Über kleine rollende Schwingungen um eine Gleichgewichtslage, Nieuw Archiefvoor Wiskunde, 4 (1899), 130-155. |
[23] |
B. Leimkuhler and S. Reich, "Simulating Hamiltonian Dynamics,'' Cambridge Monographs on Applied and Computational Mathematics, 14, Cambridge Univ. Press, Cambridge, 2004. |
[24] |
B. Leimkuhler and R. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems, J. Computational Phys., 112 (1994), 117-125.doi: 10.1006/jcph.1994.1085. |
[25] |
M. Leok and J. Zhang, Discrete Hamiltonian variational integrators, IMA J. Numerical Analysis, 31 (2011), 1497-1532. |
[26] |
J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,'' 2nd edition, Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1999. |
[27] |
J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.doi: 10.1017/S096249290100006X. |
[28] |
R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems, J. Nonlinear Sci., 16 (2006), 283-328.doi: 10.1007/s00332-005-0698-1. |
[29] |
T. Mestdag, A. M. Bloch and O. E. Fernandez, Hamiltonization and geometric integration of nonholonomic mechanical systems, in "Proc. 8th Nat. Congress on Theor. and Applied Mechanics," Brussels, Belgium, (2009), 230-236, arXiv:1105.5223. |
[30] |
F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, eds., "NIST Handbook of Mathematical Functions,'' U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, MA, 2010. |
[31] |
T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization, J. Geometry and Phys., 61 (2011), 1263-1291.doi: 10.1016/j.geomphys.2011.02.015. |
[32] |
J. Ryckaert, G. Ciccotti and H. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Computational Phs., 23 (1977), 327-341.doi: 10.1016/0021-9991(77)90098-5. |
[33] |
B. van Brunt, "The Calculus of Variations,'' Universitext, Springer-Verlag, New York, 2004. |
[34] |
L. Verlet, Computer experiments on classical fluids, Phys. Rev., 159 (1967), 98-103.doi: 10.1103/PhysRev.159.98. |