June  2012, 4(2): 137-163. doi: 10.3934/jgm.2012.4.137

Variational Integrators for Hamiltonizable Nonholonomic Systems

1. 

Department of Mathematics, Wellesley College, Wellesley, MA 02482, USA Government

2. 

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, United States

3. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States

Received  May 2011 Revised  October 2011 Published  August 2012

We report on new applications of the Poincaré and Sundman time-transformations to the simulation of nonholonomic systems. These transformations are here applied to nonholonomic mechanical systems known to be Hamiltonizable (briefly, nonholonomic systems whose constrained mechanics are Hamiltonian after a suitable time reparameterization). We show how such an application permits the usage of variational integrators for these non-variational mechanical systems. Examples are given and numerical results are compared to the standard nonholonomic integrator results.
Citation: Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137
References:
[1]

A. M. Bloch, "Nonholonomic Mechanics and Control,'', Interdisciplinary Applied Mathematics, 24 (2003).   Google Scholar

[2]

A. M. Bloch, O. E. Fernandez and T. Mestdag, Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations,, Rep. Math. Phys., 63 (2009), 225.  doi: 10.1016/S0034-4877(09)90001-5.  Google Scholar

[3]

A. V. Borisov and I. S. Mamaev, Rolling of a rigid body on plane and sphere. Hierarchy of dynamics,, Reg. Chaotic Dyn., 7 (2002), 177.   Google Scholar

[4]

A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems,, Reg. Chaotic Dyn., 13 (2008), 443.  doi: 10.1134/S1560354708050079.  Google Scholar

[5]

R. L. Burden and J. D. Faires, "Numerical Analysis,'', 8th edition, (2005).   Google Scholar

[6]

S. A. Chaplygin, On a ball's rolling on a horizontal plane,, (in Russian), 24 (1903), 139.   Google Scholar

[7]

S. A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multiplier theorem,, (in Russian), 28 (1911), 303.   Google Scholar

[8]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics, 1793 (2002).   Google Scholar

[9]

J. Cortés Monforte and S. Martĺnez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365.  doi: 10.1088/0951-7715/14/5/322.  Google Scholar

[10]

Y. N. Fedorov and B. Jovanović, Quasi-Chaplygin systems and nonholonomic rigid body dynamics,, Lett. Math. Phys., 76 (2006), 215.  doi: 10.1007/s11005-006-0069-3.  Google Scholar

[11]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie Groups,, Nonlinearity, 18 (2005), 2211.  doi: 10.1088/0951-7715/18/5/017.  Google Scholar

[12]

O. E. Fernandez, "The Hamiltonization of Nonholonomic Systems and its Applications,'', Ph.D. Thesis, (2009).   Google Scholar

[13]

O. E. Fernandez and A. M. Bloch, The Weitzenböck connection and time reparameterization in nonholonomic mechanics,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3525798.  Google Scholar

[14]

O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/34/344005.  Google Scholar

[15]

O. E. Fernandez, T. Mestdag and A. M. Bloch, A generalization of Chaplygin's reducibility theorem,, Reg. Chaotic Dyn., 14 (2009), 635.  doi: 10.1134/S1560354709060033.  Google Scholar

[16]

P. Fitzpatrick, "Advanced Calculus,'', 2nd edition, (2006).   Google Scholar

[17]

M. R. Flannery, The enigma of nonholonomic constraints,, Am. J. of Phys., 73 (2005), 265.  doi: 10.1119/1.1830501.  Google Scholar

[18]

Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,, Phys. Lett. A, 133 (1988), 134.  doi: 10.1016/0375-9601(88)90773-6.  Google Scholar

[19]

E. Hairer, Variable time step integration with symplectic methods,, Appl. Numer. Math., 25 (1997), 219.  doi: 10.1016/S0168-9274(97)00061-5.  Google Scholar

[20]

D. Iglesias, J. C. Marrero, D. M. de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, J. Nonlinear Sci., 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[21]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete and Continuous Dynamical Systems, 3 (2010), 61.   Google Scholar

[22]

D. Korteweg, Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung und insbesondere Über kleine rollende Schwingungen um eine Gleichgewichtslage,, Nieuw Archiefvoor Wiskunde, 4 (1899), 130.   Google Scholar

[23]

B. Leimkuhler and S. Reich, "Simulating Hamiltonian Dynamics,'', Cambridge Monographs on Applied and Computational Mathematics, 14 (2004).   Google Scholar

[24]

B. Leimkuhler and R. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems,, J. Computational Phys., 112 (1994), 117.  doi: 10.1006/jcph.1994.1085.  Google Scholar

[25]

M. Leok and J. Zhang, Discrete Hamiltonian variational integrators,, IMA J. Numerical Analysis, 31 (2011), 1497.   Google Scholar

[26]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,'', 2nd edition, 17 (1999).   Google Scholar

[27]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[28]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[29]

T. Mestdag, A. M. Bloch and O. E. Fernandez, Hamiltonization and geometric integration of nonholonomic mechanical systems,, in, (2009), 230.   Google Scholar

[30]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, eds., "NIST Handbook of Mathematical Functions,'', U.S. Department of Commerce, (2010).   Google Scholar

[31]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geometry and Phys., 61 (2011), 1263.  doi: 10.1016/j.geomphys.2011.02.015.  Google Scholar

[32]

J. Ryckaert, G. Ciccotti and H. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes,, J. Computational Phs., 23 (1977), 327.  doi: 10.1016/0021-9991(77)90098-5.  Google Scholar

[33]

B. van Brunt, "The Calculus of Variations,'', Universitext, (2004).   Google Scholar

[34]

L. Verlet, Computer experiments on classical fluids,, Phys. Rev., 159 (1967), 98.  doi: 10.1103/PhysRev.159.98.  Google Scholar

show all references

References:
[1]

A. M. Bloch, "Nonholonomic Mechanics and Control,'', Interdisciplinary Applied Mathematics, 24 (2003).   Google Scholar

[2]

A. M. Bloch, O. E. Fernandez and T. Mestdag, Hamiltonization of nonholonomic systems and the inverse problem of the calculus of variations,, Rep. Math. Phys., 63 (2009), 225.  doi: 10.1016/S0034-4877(09)90001-5.  Google Scholar

[3]

A. V. Borisov and I. S. Mamaev, Rolling of a rigid body on plane and sphere. Hierarchy of dynamics,, Reg. Chaotic Dyn., 7 (2002), 177.   Google Scholar

[4]

A. V. Borisov and I. S. Mamaev, Conservation laws, hierarchy of dynamics and explicit integration of nonholonomic systems,, Reg. Chaotic Dyn., 13 (2008), 443.  doi: 10.1134/S1560354708050079.  Google Scholar

[5]

R. L. Burden and J. D. Faires, "Numerical Analysis,'', 8th edition, (2005).   Google Scholar

[6]

S. A. Chaplygin, On a ball's rolling on a horizontal plane,, (in Russian), 24 (1903), 139.   Google Scholar

[7]

S. A. Chaplygin, On the theory of motion of nonholonomic systems. The reducing-multiplier theorem,, (in Russian), 28 (1911), 303.   Google Scholar

[8]

J. Cortés Monforte, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lecture Notes in Mathematics, 1793 (2002).   Google Scholar

[9]

J. Cortés Monforte and S. Martĺnez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365.  doi: 10.1088/0951-7715/14/5/322.  Google Scholar

[10]

Y. N. Fedorov and B. Jovanović, Quasi-Chaplygin systems and nonholonomic rigid body dynamics,, Lett. Math. Phys., 76 (2006), 215.  doi: 10.1007/s11005-006-0069-3.  Google Scholar

[11]

Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie Groups,, Nonlinearity, 18 (2005), 2211.  doi: 10.1088/0951-7715/18/5/017.  Google Scholar

[12]

O. E. Fernandez, "The Hamiltonization of Nonholonomic Systems and its Applications,'', Ph.D. Thesis, (2009).   Google Scholar

[13]

O. E. Fernandez and A. M. Bloch, The Weitzenböck connection and time reparameterization in nonholonomic mechanics,, J. Math. Phys., 52 (2011).  doi: 10.1063/1.3525798.  Google Scholar

[14]

O. E. Fernandez and A. M. Bloch, Equivalence of the dynamics of nonholonomic and variational nonholonomic systems for certain initial data,, J. Phys. A, 41 (2008).  doi: 10.1088/1751-8113/41/34/344005.  Google Scholar

[15]

O. E. Fernandez, T. Mestdag and A. M. Bloch, A generalization of Chaplygin's reducibility theorem,, Reg. Chaotic Dyn., 14 (2009), 635.  doi: 10.1134/S1560354709060033.  Google Scholar

[16]

P. Fitzpatrick, "Advanced Calculus,'', 2nd edition, (2006).   Google Scholar

[17]

M. R. Flannery, The enigma of nonholonomic constraints,, Am. J. of Phys., 73 (2005), 265.  doi: 10.1119/1.1830501.  Google Scholar

[18]

Z. Ge and J. E. Marsden, Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators,, Phys. Lett. A, 133 (1988), 134.  doi: 10.1016/0375-9601(88)90773-6.  Google Scholar

[19]

E. Hairer, Variable time step integration with symplectic methods,, Appl. Numer. Math., 25 (1997), 219.  doi: 10.1016/S0168-9274(97)00061-5.  Google Scholar

[20]

D. Iglesias, J. C. Marrero, D. M. de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, J. Nonlinear Sci., 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[21]

M. Kobilarov, J. E. Marsden and G. S. Sukhatme, Geometric discretization of nonholonomic systems with symmetries,, Discrete and Continuous Dynamical Systems, 3 (2010), 61.   Google Scholar

[22]

D. Korteweg, Über eine ziemlich verbreitete unrichtige Behandlungsweise eines Problemes der rollenden Bewegung und insbesondere Über kleine rollende Schwingungen um eine Gleichgewichtslage,, Nieuw Archiefvoor Wiskunde, 4 (1899), 130.   Google Scholar

[23]

B. Leimkuhler and S. Reich, "Simulating Hamiltonian Dynamics,'', Cambridge Monographs on Applied and Computational Mathematics, 14 (2004).   Google Scholar

[24]

B. Leimkuhler and R. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems,, J. Computational Phys., 112 (1994), 117.  doi: 10.1006/jcph.1994.1085.  Google Scholar

[25]

M. Leok and J. Zhang, Discrete Hamiltonian variational integrators,, IMA J. Numerical Analysis, 31 (2011), 1497.   Google Scholar

[26]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,'', 2nd edition, 17 (1999).   Google Scholar

[27]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 357.  doi: 10.1017/S096249290100006X.  Google Scholar

[28]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283.  doi: 10.1007/s00332-005-0698-1.  Google Scholar

[29]

T. Mestdag, A. M. Bloch and O. E. Fernandez, Hamiltonization and geometric integration of nonholonomic mechanical systems,, in, (2009), 230.   Google Scholar

[30]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, eds., "NIST Handbook of Mathematical Functions,'', U.S. Department of Commerce, (2010).   Google Scholar

[31]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization,, J. Geometry and Phys., 61 (2011), 1263.  doi: 10.1016/j.geomphys.2011.02.015.  Google Scholar

[32]

J. Ryckaert, G. Ciccotti and H. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes,, J. Computational Phs., 23 (1977), 327.  doi: 10.1016/0021-9991(77)90098-5.  Google Scholar

[33]

B. van Brunt, "The Calculus of Variations,'', Universitext, (2004).   Google Scholar

[34]

L. Verlet, Computer experiments on classical fluids,, Phys. Rev., 159 (1967), 98.  doi: 10.1103/PhysRev.159.98.  Google Scholar

[1]

Jorge Cortés. Energy conserving nonholonomic integrators. Conference Publications, 2003, 2003 (Special) : 189-199. doi: 10.3934/proc.2003.2003.189

[2]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[3]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[4]

Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343

[5]

Luis C. garcía-Naranjo, Fernando Jiménez. The geometric discretisation of the Suslov problem: A case study of consistency for nonholonomic integrators. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4249-4275. doi: 10.3934/dcds.2017182

[6]

Werner Bauer, François Gay-Balmaz. Variational integrators for anelastic and pseudo-incompressible flows. Journal of Geometric Mechanics, 2019, 11 (4) : 511-537. doi: 10.3934/jgm.2019025

[7]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[8]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[9]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[10]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[11]

Mats Vermeeren. Modified equations for variational integrators applied to Lagrangians linear in velocities. Journal of Geometric Mechanics, 2019, 11 (1) : 1-22. doi: 10.3934/jgm.2019001

[12]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[13]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[14]

Francesco Fassò, Andrea Giacobbe, Nicola Sansonetto. On the number of weakly Noetherian constants of motion of nonholonomic systems. Journal of Geometric Mechanics, 2009, 1 (4) : 389-416. doi: 10.3934/jgm.2009.1.389

[15]

María Barbero-Liñán, Miguel C. Muñoz-Lecanda. Strict abnormal extremals in nonholonomic and kinematic control systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 1-17. doi: 10.3934/dcdss.2010.3.1

[16]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[17]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[18]

Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485-511. doi: 10.3934/jcd.2019025

[19]

Andrey Tsiganov. Poisson structures for two nonholonomic systems with partially reduced symmetries. Journal of Geometric Mechanics, 2014, 6 (3) : 417-440. doi: 10.3934/jgm.2014.6.417

[20]

Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (3)

[Back to Top]