June  2012, 4(2): 165-180. doi: 10.3934/jgm.2012.4.165

Dirac pairs

1. 

Centre de Mathématiques Laurent Schwartz, École Polytechnique, 91128 Palaiseau, France

Received  April 2011 Published  August 2012

We extend the definition of the Nijenhuis torsion of an endomorphism of a Lie algebroid to that of a relation, and we prove that the torsion of the relation defined by a bi-Hamiltonian structure vanishes. Following Gelfand and Dorfman, we then define Dirac pairs, and we analyze the relationship of this general notion with the various kinds of compatible structures on manifolds, more generally, on Lie algebroids.
Citation: Yvette Kosmann-Schwarzbach. Dirac pairs. Journal of Geometric Mechanics, 2012, 4 (2) : 165-180. doi: 10.3934/jgm.2012.4.165
References:
[1]

P. Antunes, Poisson quasi-Nijenhuis structures with background,, Lett. Math. Phys., 86 (2008), 33.  doi: 10.1007/s11005-008-0272-5.  Google Scholar

[2]

A. Barakat, A. De Sole and V. G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations,, Japan. J. Math., 4 (2009), 141.   Google Scholar

[3]

J. Carinena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions,, J. Phys. A, 37 (2004), 5189.   Google Scholar

[4]

T. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[5]

I. Ya. Dorfman, Dirac structures of integrable evolution equations,, Phys. Lett. A, 125 (1987), 240.  doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[6]

Irene Dorfman, "Dirac Structures and Integrability of Nonlinear Evolution Equations,'', Nonlinear Science: Theory and Applications, (1993).   Google Scholar

[7]

H. Geiges, Symplectic couples on $4$-manifolds,, Duke Math. J., 85 (1996), 701.  doi: 10.1215/S0012-7094-96-08527-0.  Google Scholar

[8]

I. M. Gel'fand and I. Ja. Dorfman, Hamiltonian operators and algebraic structures associated with them,, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 13.   Google Scholar

[9]

I. M. Gel'fand and I. Ja. Dorfman, Schouten bracket and Hamiltonian operators,, (Russian) Funktsional. Anal. i Prilozhen., 14 (1980), 71.  doi: 10.1007/BF01086188.  Google Scholar

[10]

Long-Guang He and Bao-Kang Liu, Dirac-Nijenhuis manifolds,, Rep. Math. Phys., 53 (2004), 123.  doi: 10.1016/S0034-4877(04)90008-0.  Google Scholar

[11]

Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups,, in, 132 (1992), 459.   Google Scholar

[12]

Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory,, in, 287 (2011), 243.   Google Scholar

[13]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 625.  doi: 10.1007/s00574-011-0032-5.  Google Scholar

[14]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures,, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35.   Google Scholar

[15]

Y. Kosmann-Schwarzbach and V. Rubtsov, Compatible structures on Lie algebroids and Monge-Amp\`ere operators,, Acta. Appl. Math., 109 (2010), 101.  doi: 10.1007/s10440-009-9444-2.  Google Scholar

[16]

A. Kushner, V. Lychagin and V. Rubtsov, "Contact Geometry and Nonlinear Differential Equations,'', Encyclopedia of Mathematics and its Applications, 101 (2007).   Google Scholar

[17]

Zhang-Ju Liu, Some remarks on Dirac structures and Poisson reductions,, in, 51 (2000), 165.   Google Scholar

[18]

Zhang-Ju Liu, A. Weinstein and Ping Xu, Manin triples for Lie bialgebroids,, J. Differential Geom., 45 (1997), 547.   Google Scholar

[19]

V. V. Lychagin, V. N. Rubtsov and I. V. Chekalov, A classification of Monge-Ampère equations,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 281.   Google Scholar

[20]

D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds,, Lett. Math. Phys., 61 (2002), 123.   Google Scholar

[21]

Y. Terashima, On Poisson functions,, J. Sympl. Geom., 6 (2008), 1.   Google Scholar

[22]

A. Weinstein, A note on the Wehrheim-Woodward category,, J. Geom. Mechanics, 3 (2011), 507.   Google Scholar

[23]

Yanbin Yin and Longguang He, Dirac strucures on protobialgebroids,, Sci. China Ser. A, 49 (2006), 1341.  doi: 10.1007/s11425-006-1997-1.  Google Scholar

show all references

References:
[1]

P. Antunes, Poisson quasi-Nijenhuis structures with background,, Lett. Math. Phys., 86 (2008), 33.  doi: 10.1007/s11005-008-0272-5.  Google Scholar

[2]

A. Barakat, A. De Sole and V. G. Kac, Poisson vertex algebras in the theory of Hamiltonian equations,, Japan. J. Math., 4 (2009), 141.   Google Scholar

[3]

J. Carinena, J. Grabowski and G. Marmo, Courant algebroid and Lie bialgebroid contractions,, J. Phys. A, 37 (2004), 5189.   Google Scholar

[4]

T. Courant, Dirac manifolds,, Trans. Amer. Math. Soc., 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[5]

I. Ya. Dorfman, Dirac structures of integrable evolution equations,, Phys. Lett. A, 125 (1987), 240.  doi: 10.1016/0375-9601(87)90201-5.  Google Scholar

[6]

Irene Dorfman, "Dirac Structures and Integrability of Nonlinear Evolution Equations,'', Nonlinear Science: Theory and Applications, (1993).   Google Scholar

[7]

H. Geiges, Symplectic couples on $4$-manifolds,, Duke Math. J., 85 (1996), 701.  doi: 10.1215/S0012-7094-96-08527-0.  Google Scholar

[8]

I. M. Gel'fand and I. Ja. Dorfman, Hamiltonian operators and algebraic structures associated with them,, (Russian) Funktsional. Anal. i Prilozhen., 13 (1979), 13.   Google Scholar

[9]

I. M. Gel'fand and I. Ja. Dorfman, Schouten bracket and Hamiltonian operators,, (Russian) Funktsional. Anal. i Prilozhen., 14 (1980), 71.  doi: 10.1007/BF01086188.  Google Scholar

[10]

Long-Guang He and Bao-Kang Liu, Dirac-Nijenhuis manifolds,, Rep. Math. Phys., 53 (2004), 123.  doi: 10.1016/S0034-4877(04)90008-0.  Google Scholar

[11]

Y. Kosmann-Schwarzbach, Jacobian quasi-bialgebras and quasi-Poisson Lie groups,, in, 132 (1992), 459.   Google Scholar

[12]

Y. Kosmann-Schwarzbach, Poisson and symplectic functions in Lie algebroid theory,, in, 287 (2011), 243.   Google Scholar

[13]

Y. Kosmann-Schwarzbach, Nijenhuis structures on Courant algebroids,, Bull. Braz. Math. Soc. (N.S.), 42 (2011), 625.  doi: 10.1007/s00574-011-0032-5.  Google Scholar

[14]

Y. Kosmann-Schwarzbach and F. Magri, Poisson-Nijenhuis structures,, Ann. Inst. H. Poincaré Phys. Théor., 53 (1990), 35.   Google Scholar

[15]

Y. Kosmann-Schwarzbach and V. Rubtsov, Compatible structures on Lie algebroids and Monge-Amp\`ere operators,, Acta. Appl. Math., 109 (2010), 101.  doi: 10.1007/s10440-009-9444-2.  Google Scholar

[16]

A. Kushner, V. Lychagin and V. Rubtsov, "Contact Geometry and Nonlinear Differential Equations,'', Encyclopedia of Mathematics and its Applications, 101 (2007).   Google Scholar

[17]

Zhang-Ju Liu, Some remarks on Dirac structures and Poisson reductions,, in, 51 (2000), 165.   Google Scholar

[18]

Zhang-Ju Liu, A. Weinstein and Ping Xu, Manin triples for Lie bialgebroids,, J. Differential Geom., 45 (1997), 547.   Google Scholar

[19]

V. V. Lychagin, V. N. Rubtsov and I. V. Chekalov, A classification of Monge-Ampère equations,, Ann. Sci. École Norm. Sup. (4), 26 (1993), 281.   Google Scholar

[20]

D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds,, Lett. Math. Phys., 61 (2002), 123.   Google Scholar

[21]

Y. Terashima, On Poisson functions,, J. Sympl. Geom., 6 (2008), 1.   Google Scholar

[22]

A. Weinstein, A note on the Wehrheim-Woodward category,, J. Geom. Mechanics, 3 (2011), 507.   Google Scholar

[23]

Yanbin Yin and Longguang He, Dirac strucures on protobialgebroids,, Sci. China Ser. A, 49 (2006), 1341.  doi: 10.1007/s11425-006-1997-1.  Google Scholar

[1]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[2]

Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67

[3]

Ünver Çiftçi. Leibniz-Dirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167-183. doi: 10.3934/jgm.2013.5.167

[4]

Mohammad Shafiee. The 2-plectic structures induced by the Lie bialgebras. Journal of Geometric Mechanics, 2017, 9 (1) : 83-90. doi: 10.3934/jgm.2017003

[5]

Guillermo Dávila-Rascón, Yuri Vorobiev. Hamiltonian structures for projectable dynamics on symplectic fiber bundles. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1077-1088. doi: 10.3934/dcds.2013.33.1077

[6]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-Hamiltonian dynamical system I. Compactions and peakons. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 419-432. doi: 10.3934/dcds.1997.3.419

[7]

Dennis I. Barrett, Rory Biggs, Claudiu C. Remsing, Olga Rossi. Invariant nonholonomic Riemannian structures on three-dimensional Lie groups. Journal of Geometric Mechanics, 2016, 8 (2) : 139-167. doi: 10.3934/jgm.2016001

[8]

Rita Ferreira, Elvira Zappale. Bending-torsion moments in thin multi-structures in the context of nonlinear elasticity. Communications on Pure & Applied Analysis, 2020, 19 (3) : 1747-1793. doi: 10.3934/cpaa.2020072

[9]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[10]

Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-hamiltonian dynamical system ii. complex analytic behavior and convergence to non-analytic solutions. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 159-191. doi: 10.3934/dcds.1998.4.159

[11]

A. Ghose Choudhury, Partha Guha. Chiellini integrability condition, planar isochronous systems and Hamiltonian structures of Liénard equation. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2465-2478. doi: 10.3934/dcdsb.2017126

[12]

Partha Guha, Indranil Mukherjee. Hierarchies and Hamiltonian structures of the Nonlinear Schrödinger family using geometric and spectral techniques. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1677-1695. doi: 10.3934/dcdsb.2018287

[13]

William D. Kalies, Konstantin Mischaikow, Robert C.A.M. Vandervorst. Lattice structures for attractors I. Journal of Computational Dynamics, 2014, 1 (2) : 307-338. doi: 10.3934/jcd.2014.1.307

[14]

Paulo Antunes, Joana M. Nunes da Costa. Hypersymplectic structures on Courant algebroids. Journal of Geometric Mechanics, 2015, 7 (3) : 255-280. doi: 10.3934/jgm.2015.7.255

[15]

Javier de la Cruz, Michael Kiermaier, Alfred Wassermann, Wolfgang Willems. Algebraic structures of MRD codes. Advances in Mathematics of Communications, 2016, 10 (3) : 499-510. doi: 10.3934/amc.2016021

[16]

Francesco Maddalena, Danilo Percivale, Franco Tomarelli. Adhesive flexible material structures. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 553-574. doi: 10.3934/dcdsb.2012.17.553

[17]

V. V. Zhikov, S. E. Pastukhova. Korn inequalities on thin periodic structures. Networks & Heterogeneous Media, 2009, 4 (1) : 153-175. doi: 10.3934/nhm.2009.4.153

[18]

Dmitry Tamarkin. Quantization of Poisson structures on R^2. Electronic Research Announcements, 1997, 3: 119-120.

[19]

Matthias Liero, Alexander Mielke, Mark A. Peletier, D. R. Michiel Renger. On microscopic origins of generalized gradient structures. Discrete & Continuous Dynamical Systems - S, 2017, 10 (1) : 1-35. doi: 10.3934/dcdss.2017001

[20]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]