June  2012, 4(2): 181-206. doi: 10.3934/jgm.2012.4.181

A property of conformally Hamiltonian vector fields; Application to the Kepler problem

1. 

Université Pierre et Marie Curie, Institut de mathématiques de Jussieu, 4 place Jussieu, case courrier 247, 75252 Paris cedex 05, France

Received  November 2010 Revised  February 2011 Published  August 2012

Let $X$ be a Hamiltonian vector field defined on a symplectic manifold $(M,\omega)$, $g$ a nowhere vanishing smooth function defined on an open dense subset $M^0$ of $M$. We will say that the vector field $Y=gX$ is \emph{conformally Hamiltonian}. We prove that when $X$ is complete, when $Y$ is Hamiltonian with respect to another symplectic form $\omega_2$ defined on $M^0$, and when another technical condition is satisfied, then there is a symplectic diffeomorphism from $(M^0,\omega_2)$ onto an open subset of $(M,\omega)$, which maps each orbit to itself and is equivariant with respect to the flows of the vector fields $Y$ on $M^0$ and $X$ on $M$. This result explains why the diffeomorphism of the phase space of the Kepler problem restricted to the negative (resp. positive) values of the energy function, onto an open subset of the cotangent bundle to a three-dimensional sphere (resp. two-sheeted hyperboloid), discovered by Györgyi (1968) [10], re-discovered by Ligon and Schaaf (1976) [16], is a symplectic diffeomorphism. Cushman and Duistermaat (1997) [5] have shown that the Györgyi-Ligon-Schaaf diffeomorphism is characterized by three very natural properties; here that diffeomorphism is obtained by composition of the diffeomorphism given by our result about conformally Hamiltonian vector fields with a (non-symplectic) diffeomorphism built by a variant of Moser's method [20]. Infinitesimal symmetries of the Kepler problem are discussed, and it is shown that their space is a Lie algebroid with zero anchor map rather than a Lie algebra.
Citation: Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181
References:
[1]

D. V. Anosov, A note on the Kepler problem, Journal of Dynamical and Control Systems, 8 (2002), 413-442. doi: 10.1023/A:1016386605889.

[2]

J. Bernoulli, Extrait de la réponse de M. Bernoulli à M. Herman, datée de Basle le 7 octobre 1710, Histoire de l'Académie Royale des Sciences, année M.DCC.X, avec les Memoires de Mathématiques et de Physique pour la même année, (1710), 521-533. Available from: http://gallica.bnf.fr/ark:/12148/bpt6k34901/f707.image.pagination.

[3]

A. Cannas da Silva and A. Weinstein, "Geometric Models for Noncommutative Algebras," Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999.

[4]

R. H. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems," Birkhäuser Verlag, Basel, 1997.

[5]

R. H. Cushman and J. J. Duistermaat, A characterization of the Ligon-Schaaf regularization map, Comm. on Pure and Appl. Math., 50 (1997), 773-787.

[6]

A. Douady and M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, (French) [Fibered spaces in Lie algebras and in groups], Invent. Math., 1 (1966), 133-151.

[7]

V. A. Fock, Zur Theorie des Wasserstoffatoms, Zeitschrift für Physik, 98 (1935), 145-154. doi: 10.1007/BF01336904.

[8]

D. Goodstein, J. Goodstein and R. Feynman, "Feynman's Lost Lecture. The Motion of Planets Around the Sun," W. W. Norton and Company Inc., New York, 1996; French translation: Cassini, Paris, 2009.

[9]

A. Guichardet, "Le problème de Kepler; histoire et théorie," Éditions de l'École Polytechnique, Paris, 2012.

[10]

G. Györgyi, Kepler's equation, Fock variables, Bacry's generators and Dirac brackets, parts I and II, Il Nuovo Cimento, 53 (1968), 717-736, and 62 (1969), 449-474.

[11]

W. R. Hamilton, The hodograph or a new method of expressing in symbolic language the Newtonian law of attraction, Proc. Roy. Irish Acad., 3 (1846), 287-294.

[12]

G. Heckman and T. de Laat, On the regularization of the Kepler problem,, preprint, (). 

[13]

J. Herman, Extrait d'une lettre de M. Herman à M. Bernoulli, datée de Padoüe le 12 juillet 1710, Histoire de l'Académie Royale des Sciences, année M.DCC.X, avec les Memoires de Mathématiques et de Physique pour la même année, (1710), 519-521. Available from: http://gallica.bnf.fr/ark:/12148/bpt6k34901/f709.image.pagination.

[14]

T. Levi-Civita, Sur la résolution qualitative du problème restreint des trois corps, Acta Math., 30 (1906), 305-327. doi: 10.1007/BF02418577.

[15]

P. Libermann and C.-M. Marle, "Symplectic Geometry and Analytical Mechanics," Mathematics and its Applications, 35, D. Reidel Publishing Company, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.

[16]

T. Ligon and M. Schaaf, On the global symmetry of the classical Kepler problem, Rep. Math. Phys., 9 (1976), 281-300. doi: 10.1016/0034-4877(76)90061-6.

[17]

A. J. Maciejewski, M. Prybylska and A. V. Tsiganov, On algebraic construction of certain integrable and super-integrable systems,, preprint, (). 

[18]

K. C. H. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids," London Mathematical Society lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.

[19]

J. Milnor, On the geometry of the Kepler problem, Amer. Math. Monthly, 90 (1983), 353-365. doi: 10.2307/2975570.

[20]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Commun. Pure Appl. Math., 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[21]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction," Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004.

[22]

J.-M. Souriau, Géométrie globale du problème à deux corps, (French) [Global geometry of the two-body problem], Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 369-418.

show all references

References:
[1]

D. V. Anosov, A note on the Kepler problem, Journal of Dynamical and Control Systems, 8 (2002), 413-442. doi: 10.1023/A:1016386605889.

[2]

J. Bernoulli, Extrait de la réponse de M. Bernoulli à M. Herman, datée de Basle le 7 octobre 1710, Histoire de l'Académie Royale des Sciences, année M.DCC.X, avec les Memoires de Mathématiques et de Physique pour la même année, (1710), 521-533. Available from: http://gallica.bnf.fr/ark:/12148/bpt6k34901/f707.image.pagination.

[3]

A. Cannas da Silva and A. Weinstein, "Geometric Models for Noncommutative Algebras," Berkeley Mathematics Lecture Notes, 10, Amer. Math. Soc., Providence, RI; Berkeley Center for Pure and Applied Mathematics, Berkeley, CA, 1999.

[4]

R. H. Cushman and L. Bates, "Global Aspects of Classical Integrable Systems," Birkhäuser Verlag, Basel, 1997.

[5]

R. H. Cushman and J. J. Duistermaat, A characterization of the Ligon-Schaaf regularization map, Comm. on Pure and Appl. Math., 50 (1997), 773-787.

[6]

A. Douady and M. Lazard, Espaces fibrés en algèbres de Lie et en groupes, (French) [Fibered spaces in Lie algebras and in groups], Invent. Math., 1 (1966), 133-151.

[7]

V. A. Fock, Zur Theorie des Wasserstoffatoms, Zeitschrift für Physik, 98 (1935), 145-154. doi: 10.1007/BF01336904.

[8]

D. Goodstein, J. Goodstein and R. Feynman, "Feynman's Lost Lecture. The Motion of Planets Around the Sun," W. W. Norton and Company Inc., New York, 1996; French translation: Cassini, Paris, 2009.

[9]

A. Guichardet, "Le problème de Kepler; histoire et théorie," Éditions de l'École Polytechnique, Paris, 2012.

[10]

G. Györgyi, Kepler's equation, Fock variables, Bacry's generators and Dirac brackets, parts I and II, Il Nuovo Cimento, 53 (1968), 717-736, and 62 (1969), 449-474.

[11]

W. R. Hamilton, The hodograph or a new method of expressing in symbolic language the Newtonian law of attraction, Proc. Roy. Irish Acad., 3 (1846), 287-294.

[12]

G. Heckman and T. de Laat, On the regularization of the Kepler problem,, preprint, (). 

[13]

J. Herman, Extrait d'une lettre de M. Herman à M. Bernoulli, datée de Padoüe le 12 juillet 1710, Histoire de l'Académie Royale des Sciences, année M.DCC.X, avec les Memoires de Mathématiques et de Physique pour la même année, (1710), 519-521. Available from: http://gallica.bnf.fr/ark:/12148/bpt6k34901/f709.image.pagination.

[14]

T. Levi-Civita, Sur la résolution qualitative du problème restreint des trois corps, Acta Math., 30 (1906), 305-327. doi: 10.1007/BF02418577.

[15]

P. Libermann and C.-M. Marle, "Symplectic Geometry and Analytical Mechanics," Mathematics and its Applications, 35, D. Reidel Publishing Company, Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.

[16]

T. Ligon and M. Schaaf, On the global symmetry of the classical Kepler problem, Rep. Math. Phys., 9 (1976), 281-300. doi: 10.1016/0034-4877(76)90061-6.

[17]

A. J. Maciejewski, M. Prybylska and A. V. Tsiganov, On algebraic construction of certain integrable and super-integrable systems,, preprint, (). 

[18]

K. C. H. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids," London Mathematical Society lecture Note Series, 213, Cambridge University Press, Cambridge, 2005.

[19]

J. Milnor, On the geometry of the Kepler problem, Amer. Math. Monthly, 90 (1983), 353-365. doi: 10.2307/2975570.

[20]

J. Moser, Regularization of Kepler's problem and the averaging method on a manifold, Commun. Pure Appl. Math., 23 (1970), 609-636. doi: 10.1002/cpa.3160230406.

[21]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction," Progress in Mathematics, 222, Birkhäuser Boston, Inc., Boston, MA, 2004.

[22]

J.-M. Souriau, Géométrie globale du problème à deux corps, (French) [Global geometry of the two-body problem], Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 369-418.

[1]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[2]

Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257

[3]

Corey Shanbrom. Periodic orbits in the Kepler-Heisenberg problem. Journal of Geometric Mechanics, 2014, 6 (2) : 261-278. doi: 10.3934/jgm.2014.6.261

[4]

Rafał Kamocki, Marek Majewski. On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2557-2568. doi: 10.3934/dcdsb.2014.19.2557

[5]

Leonardo Câmara, Bruno Scárdua. On the integrability of holomorphic vector fields. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 481-493. doi: 10.3934/dcds.2009.25.481

[6]

Jifeng Chu, Zhaosheng Feng, Ming Li. Periodic shadowing of vector fields. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3623-3638. doi: 10.3934/dcds.2016.36.3623

[7]

Carlota Rebelo, Alexandre Simões. Periodic linear motions with multiple collisions in a forced Kepler type problem. Discrete and Continuous Dynamical Systems, 2018, 38 (8) : 3955-3975. doi: 10.3934/dcds.2018172

[8]

BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85

[9]

Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete and Continuous Dynamical Systems, 2021, 41 (10) : 4943-4957. doi: 10.3934/dcds.2021063

[10]

Gabriella Pinzari. Global Kolmogorov tori in the planetary $\boldsymbol N$-body problem. Announcement of result. Electronic Research Announcements, 2015, 22: 55-75. doi: 10.3934/era.2015.22.55

[11]

Manuel F. Rañada. Quasi-bi-Hamiltonian structures and superintegrability: Study of a Kepler-related family of systems endowed with generalized Runge-Lenz integrals of motion. Journal of Geometric Mechanics, 2021, 13 (2) : 195-208. doi: 10.3934/jgm.2021003

[12]

Livio Flaminio, Miguel Paternain. Linearization of cohomology-free vector fields. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1031-1039. doi: 10.3934/dcds.2011.29.1031

[13]

Alexander Krasnosel'skii, Jean Mawhin. The index at infinity for some vector fields with oscillating nonlinearities. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 165-174. doi: 10.3934/dcds.2000.6.165

[14]

José Luis Bravo, Manuel Fernández, Ignacio Ojeda, Fernando Sánchez. Uniqueness of limit cycles for quadratic vector fields. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 483-502. doi: 10.3934/dcds.2019020

[15]

Antoni Ferragut, Jaume Llibre, Adam Mahdi. Polynomial inverse integrating factors for polynomial vector fields. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 387-395. doi: 10.3934/dcds.2007.17.387

[16]

Jorge Sotomayor, Michail Zhitomirskii. On pairs of foliations defined by vector fields in the plane. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 741-749. doi: 10.3934/dcds.2000.6.741

[17]

Benedetto Piccoli, Francesco Rossi. Measure dynamics with Probability Vector Fields and sources. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6207-6230. doi: 10.3934/dcds.2019270

[18]

Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure and Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725

[19]

Jaume Llibre, Marco Antonio Teixeira. Regularization of discontinuous vector fields in dimension three. Discrete and Continuous Dynamical Systems, 1997, 3 (2) : 235-241. doi: 10.3934/dcds.1997.3.235

[20]

Jaume Llibre, Ricardo Miranda Martins, Marco Antonio Teixeira. On the birth of minimal sets for perturbed reversible vector fields. Discrete and Continuous Dynamical Systems, 2011, 31 (3) : 763-777. doi: 10.3934/dcds.2011.31.763

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (10)

Other articles
by authors

[Back to Top]