September  2012, 4(3): 239-269. doi: 10.3934/jgm.2012.4.239

Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields

1. 

Department of Mathematics, Yeditepe University, 34755 Ataşehir, İstanbul, Turkey, Turkey

Received  November 2010 Revised  March 2012 Published  October 2012

We introduce natural differential geometric structures underlying the Poisson-Vlasov equations in momentum variables. First, we decompose the space of all vector fields over particle phase space into a semi-direct product algebra of Hamiltonian vector fields and its complement. The latter is related to dual space of the Lie algebra. We identify generators of homotheties as dynamically irrelevant vector fields in the complement. Lie algebra of Hamiltonian vector fields is isomorphic to the space of all Lagrangian submanifolds with respect to Tulczyjew symplectic structure. This is obtained as tangent space at the identity of the group of canonical diffeomorphisms represented as space of sections of a trivial bundle. We obtain the momentum-Vlasov equations as vertical equivalence, or representative, of complete cotangent lift of Hamiltonian vector field generating particle motion. Vertical representatives can be described by holonomic lift from a Whitney product to a Tulczyjew symplectic space. We show that vertical representatives of complete cotangent lifts form an integrable subbundle of this Tulczyjew space. We exhibit dynamical relations between Lie algebras of Hamiltonian vector fields and of contact vector fields, in particular; infinitesimal quantomorphisms on quantization bundle. Gauge symmetries of particle motion are extended to tensorial objects including complete lift of particle motion. Poisson equation is then obtained as zero value of momentum map for the Hamiltonian action of gauge symmetries for kinematical description.
Citation: Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239
References:
[1]

R. Abraham, J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis, and Applications," Springer-Verlag, 2nd edition New York, 1988. doi: 10.1007/978-1-4612-1029-0.

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," Graduate Texts in Mathematics, 60, Springer-Verlag, 1989.

[3]

A. Banyaga, Sur la structure du groupe des diffmorphismes qui preservent une forme symplectique, Comment. Math. Helvetici, 53 (1978), 174-227. doi: 10.1007/BF02566074.

[4]

A. Banyaga, "The Structure of Classical Diffeomorphism Groups," Mathematics and its Applications, 400, Kluwer Academic Publishers Group, Dordrecht, 1997.

[5]

S. Benenti, "Hamiltonian Structures and Generating Families," Universitext v223. Springer, 2011.

[6]

S. Benenti and W. M. Tulczyjew, The geometrical meaning and globalization of the Hamilton-Jacobi method, Diff. Geom. Meth. in Math. Phys. (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lect. Notes in Math, Springer, Berlin, 836 (1980), 9-21.

[7]

M. Chaperon, On generating families, The Floer Memorial Volume, (Eds. H. Hofer, C. H. Taubes, A. Weinstein and E. Zehnder), Progress in Mathematics Birkauser, 133 (1995), 283-296.

[8]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry," Cambridge University Press, Cambridge, 1986.

[9]

M. De Le and P. R. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics," North-Holland Mathematics Studies, 158, North-Holland, Amsterdam, 1989.

[10]

P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.

[11]

O. Esen and H. Gümral, Lifts, jets and reduced dynamics, Int. J. of Geom. Meth. in Modern Phys., 8 (2011), 331-344. doi: 10.1142/S0219887811005166.

[12]

O. Esen and H. Gümral, Geometry of plasma dynamics III: Orbits of canonical diffeomorphisms, work in progress.

[13]

J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Proc. of the Conference (CSSR-GDR-Poland) on Diff. Geom. and its Appl., Nove Mesto na Morave, Sep. 1980, Univ. Praha, (1981), 89-102.

[14]

F. Gay-Balmaz and C. Tronci, Vlasov moment flows and geodesics on the Jacobi group, preprint, arXiv:1105.1734v1.

[15]

F. Gay-Balmaz, C. Tronci and C. Vizman, Geometric dynamics on the automorphism group of principal bundles: geodesic flows, dual pairs and chromomorphism groups, preprint, arXiv:1006.0650v2.

[16]

F. Gay-Balmaz and C. Vizman, Dual pairs in fluid dynamics, Ann. Glob. Anal. Geom., 41 (2012), 1-24. doi: 10.1007/s10455-011-9267-z.

[17]

J. Gibbons, Collisionless Boltzmann equations and integrable moment equations, Physica D, 3 (1981), 503-511. doi: 10.1016/0167-2789(81)90036-1.

[18]

V. Guillemin and S. Sternberg, The moment map and collective motion, Ann. of Phys., 127 (1980), 220-253. doi: 10.1016/0003-4916(80)90155-4.

[19]

V. Guillemin and S. Sternberg, "Symplectic Techniques in Physics," Cambridge University Press (Cambridge), 1984.

[20]

H. Gümral, Geometry of plasma dynamics I: Group of canonical diffeomorphisms, J. Math. Phys., 51 (2010), 23 pp. 083501.

[21]

R. S. Ismagilov, M. Losik and P. W. Michor, A 2-cocycle on a group of symplectomorphisms, Moscow Math. J., 6 (2006), 307-315.

[22]

A. N. Kaufman and R. L. Dewar, Canonical derivation of the Vlasov-Coulomb noncanonical Poisson structure, Cont. Math. AMS, 28 (1984), 51-54. doi: 10.1090/conm/028/751974.

[23]

P. Kobak, Natural liftings of vector fields to tangent bundles of bundles of 1-forms, Math. Boch., 116 (1991), 319-326.

[24]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry Vol.1," Interscience Tract, No. 15, 1963.

[25]

I. Kolar, P. W. Michor and J. Slovak, "Natural Operations in Differential Geometry," Springer-Verlag, Berlin, Heidelberg, 1993.

[26]

Y. Kosmann-Schwarzbach, Vector fields and generalized vector fields on fibered manifolds, Geometry and differential geometry (Proc. Conf. Univ. Haifa, Isral, 1979), (eds. R. Artzy and I. Vaisman), Lecture Notes in Math., Springer-Verlag, Heidelberg, 792 (1980), 307-355.

[27]

A. J. Ledger and K. Yano, The tangent bundle of a locally symmetric space, J. London Math. Soc., 40 (1963), 487-492. doi: 10.1112/jlms/s1-40.1.487.

[28]

P. Libermann and C. M. Marle, "Symplectic Geometry and Analytical Mechanics," D. Reidel Publishing Company, Kluwer Academic Publishers Group, 1987.

[29]

J. E. Marsden, A correspondence principle for momentum operators, Can. Math. Bull., 10 (1967), 247-250. doi: 10.4153/CMB-1967-023-x.

[30]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.

[31]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Physica D, 4 (1982), 394-406. doi: 10.1016/0167-2789(82)90043-4.

[32]

J. E. Marsden, A group theoretic approach to the equations of plasma physics, Canad. Math. Bull., 25 (1982), 129-142. doi: 10.4153/CMB-1982-019-9.

[33]

J. E. Marsden, A. Weinstein, T. S. Ratiu, R. Schmid and R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Atti della Academia della Scienze di Torino, 117 (1983), 289-340.

[34]

J. E. Marsden, P. J. Morrison and A. Weinstein, Hamiltonian structure of the BBGKY hierarchy equations, Comtemp. Math., AMS, 28 (1984), 115-124.

[35]

D. McDuff and D. Salamon, "Introduction to Symplectic Topology," Second edition. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, 1998.

[36]

P. Michor, Manifolds of smooth maps, Cahiers Top. Geo. Diff., 19 (1978), 47-78.

[37]

P. J. Morrison, The Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys. Lett. A, 80 (1980), 383-386. doi: 10.1016/0375-9601(80)90776-8.

[38]

P. J. Morrison and J. M. Greene, Noncanonical Hamiltonian density formulation of hydrodynamics and magnetohydrodynamics, Phys. Rev. Lett., 45 (1980), 790-794. doi: 10.1103/PhysRevLett.45.790.

[39]

P. J. Morrison, "Hamiltonian Field Description of One-Dimensional Poisson-Vlasov Equations," PPPL-1788, 1981.

[40]

P. J. Morrison, Poisson brackets for fluids and plasmas, in Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems, (La Jolla Institute, 1981) AIP Conf. Proc., (eds. M. Taber and Y. Treve), (AIP, New York), 88 (1982), 13-46.

[41]

P. J. Olver, "Applications of Lie Groups to Differential Equations," Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1986.

[42]

Z. Pogoda, Horizontal lifts and foliations, Suppl. ai Rendiconti del Circolo Mat. di Palermo, 21 (1989), 279-283.

[43]

T. S. Ratiu, R. Schmid and M. R. Adams, The Lie group structure of diffeomorphism groups and invertible Fourier integral operators, Infinite dimensional Groups with Applications, (ed. V. Kac), Math. Sci. Res. Inst. Publ., Springer, New York, 4 (1985), 1-69.

[44]

T. S. Ratiu and R. Schmid, The differentiable structure of three remarkable diffeomorphism groups, Mathematische Zeitschrift, 177 (1981), 81-100. doi: 10.1007/BF01214340.

[45]

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. (2), 10 (1958), 338-354. doi: 10.2748/tmj/1178244668.

[46]

D. J. Saunders, "The Geometry of Jet Bundles," London Math. Soc., Lecture Notes Series, 142, Cambridge Univ. Press, 1989.

[47]

C. Scovel and A. Weinstein, Finite-dimensional Lie-Poisson approximations to Vlasov-Poisson equations, Comm. Pure Appl. Math., 47 (1994), 683-709. doi: 10.1002/cpa.3160470505.

[48]

J. Sniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J., 22 (1972), 267-275. doi: 10.1512/iumj.1972.22.22021.

[49]

T. Swift, A note on the space of lagrangian submanifolds of a symplectic 4-manifold, Journal of Geometry and Physics, 35 (2000), 183-192. doi: 10.1016/S0393-0440(00)00008-5.

[50]

S. Sternberg, "Lectures on Differential Geometry," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964

[51]

S. Tanno, An almost complex structure of the tangent bundle of an almost contact manifold, Tohoku Math. J. (2), 17 (1965), 7-15. doi: 10.2748/tmj/1178243616.

[52]

P. Tondeur, Structure presque klienne naturelle sur la fibrdes vecteurs covariants d'une vari riemannienne, C. R. Acad. Sci. Paris, 254 (1962), 407-408.

[53]

W. M. Tulczyjew, The Legendre transformation, Ann. Inst. Henri PoincarSec. A: Phys. Thr., XXVII (1977), 101-114.

[54]

W. M. Tulczyjew, A symplectic formulation of relativistic particle dynamics, Acta Physica Polonica B, 8 (1977), 431-447.

[55]

W. M. Tulczyjew, A symplectic formulation of particle dynamics, Differential Geometric Methods in Mathematical Physics, Lect. Notes in Math., 570 (1977), 457-463. doi: 10.1007/BFb0087795.

[56]

W. M. Tulczyjew, A symplectic framework of linear field theories, Ann. Mat. Pura Appl. (4), 130 (1981), 177-195.

[57]

W. M. Tulczyjew, The Euler-Lagrange resolution, Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), 22-48, Lecture Notes in Math., 836, Springer, Berlin, 1980.

[58]

W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems and the Legendre transformation, Istituto Nazionale di Alta Matematica, Symposia Mathematica, 14 (1974), 247-258.

[59]

W. M. Tulczyjew and P. Urbanski, A slow and careful Legendre transformation for singular Lagrangians, Acta Phys. Polon. B, 30 (1999), 2909-2978.

[60]

K. Yano and E. T. Davies, On the tangent bundle of Finsler and Riemannian manifolds, Rend. Circ. Mat. Palermo (2), 12 (1963), 211-228. doi: 10.1007/BF02843966.

[61]

K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I. General Theory, J. Math. Soc. Japan, 18 (1966), 194-210. doi: 10.2969/jmsj/01820194.

[62]

K. Yano and A. J. Ledger, Linear connections on tangent bundles, J. London Math. Soc., 39 (1964), 495-500. doi: 10.1112/jlms/s1-39.1.495.

[63]

K. Yano and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan, 19 (1967), 91-113. doi: 10.2969/jmsj/01910091.

[64]

I. Vaisman, Locally conformal symplectic manifolds, Int. J. Math. and Math. Sci., 8 (1985), 521-536. doi: 10.1155/S0161171285000564.

[65]

L. Van Hove, Sur le proble des relations entre les transformations unitaires de la manique quantique et les transformations canoniques de la manique classique, Acad. Roy. Belgique. Bull. Cl. Sci. (5), 37 (1951), 610-620.

[66]

C. Vizman, Some remarks on the quantomorphism group, Proc. of the Third International Workshop on Diff. Geom., Sibiu, Romania, Gen. Math., 5 (1997), 393-399.

[67]

C. Vizman, Abelian extensions via prequantization, Annals of Global Analysis and Geometry, 39 (2011), 361-386.

[68]

A. Weinstein, "Lectures on Symplectic Manifolds," Exp. lec. from the CBMS, Regional Conference Series in Mathematics, No. 29. A.M.S., Providence, 1977.

[69]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advan. in Math., 6 (1971), 329-346. doi: 10.1016/0001-8708(71)90020-X.

[70]

A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Annals of Math., 2 (1973), 377-410. doi: 10.2307/1970911.

[71]

A. Weinstein and P. J. Morrison, Comments on: The Maxwell-Vlasov equation as a continuous Hamiltonian system, Phys. Lett. A., 86 (1981), 235-236. doi: 10.1016/0375-9601(81)90496-5.

show all references

References:
[1]

R. Abraham, J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis, and Applications," Springer-Verlag, 2nd edition New York, 1988. doi: 10.1007/978-1-4612-1029-0.

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics," Graduate Texts in Mathematics, 60, Springer-Verlag, 1989.

[3]

A. Banyaga, Sur la structure du groupe des diffmorphismes qui preservent une forme symplectique, Comment. Math. Helvetici, 53 (1978), 174-227. doi: 10.1007/BF02566074.

[4]

A. Banyaga, "The Structure of Classical Diffeomorphism Groups," Mathematics and its Applications, 400, Kluwer Academic Publishers Group, Dordrecht, 1997.

[5]

S. Benenti, "Hamiltonian Structures and Generating Families," Universitext v223. Springer, 2011.

[6]

S. Benenti and W. M. Tulczyjew, The geometrical meaning and globalization of the Hamilton-Jacobi method, Diff. Geom. Meth. in Math. Phys. (Proc. Conf., Aix-en-Provence/Salamanca, 1979), Lect. Notes in Math, Springer, Berlin, 836 (1980), 9-21.

[7]

M. Chaperon, On generating families, The Floer Memorial Volume, (Eds. H. Hofer, C. H. Taubes, A. Weinstein and E. Zehnder), Progress in Mathematics Birkauser, 133 (1995), 283-296.

[8]

M. Crampin and F. A. E. Pirani, "Applicable Differential Geometry," Cambridge University Press, Cambridge, 1986.

[9]

M. De Le and P. R. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics," North-Holland Mathematics Studies, 158, North-Holland, Amsterdam, 1989.

[10]

P. Dombrowski, On the geometry of the tangent bundle, J. Reine Angew. Math., 210 (1962), 73-88.

[11]

O. Esen and H. Gümral, Lifts, jets and reduced dynamics, Int. J. of Geom. Meth. in Modern Phys., 8 (2011), 331-344. doi: 10.1142/S0219887811005166.

[12]

O. Esen and H. Gümral, Geometry of plasma dynamics III: Orbits of canonical diffeomorphisms, work in progress.

[13]

J. Gancarzewicz, Liftings of functions and vector fields to natural bundles, Proc. of the Conference (CSSR-GDR-Poland) on Diff. Geom. and its Appl., Nove Mesto na Morave, Sep. 1980, Univ. Praha, (1981), 89-102.

[14]

F. Gay-Balmaz and C. Tronci, Vlasov moment flows and geodesics on the Jacobi group, preprint, arXiv:1105.1734v1.

[15]

F. Gay-Balmaz, C. Tronci and C. Vizman, Geometric dynamics on the automorphism group of principal bundles: geodesic flows, dual pairs and chromomorphism groups, preprint, arXiv:1006.0650v2.

[16]

F. Gay-Balmaz and C. Vizman, Dual pairs in fluid dynamics, Ann. Glob. Anal. Geom., 41 (2012), 1-24. doi: 10.1007/s10455-011-9267-z.

[17]

J. Gibbons, Collisionless Boltzmann equations and integrable moment equations, Physica D, 3 (1981), 503-511. doi: 10.1016/0167-2789(81)90036-1.

[18]

V. Guillemin and S. Sternberg, The moment map and collective motion, Ann. of Phys., 127 (1980), 220-253. doi: 10.1016/0003-4916(80)90155-4.

[19]

V. Guillemin and S. Sternberg, "Symplectic Techniques in Physics," Cambridge University Press (Cambridge), 1984.

[20]

H. Gümral, Geometry of plasma dynamics I: Group of canonical diffeomorphisms, J. Math. Phys., 51 (2010), 23 pp. 083501.

[21]

R. S. Ismagilov, M. Losik and P. W. Michor, A 2-cocycle on a group of symplectomorphisms, Moscow Math. J., 6 (2006), 307-315.

[22]

A. N. Kaufman and R. L. Dewar, Canonical derivation of the Vlasov-Coulomb noncanonical Poisson structure, Cont. Math. AMS, 28 (1984), 51-54. doi: 10.1090/conm/028/751974.

[23]

P. Kobak, Natural liftings of vector fields to tangent bundles of bundles of 1-forms, Math. Boch., 116 (1991), 319-326.

[24]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry Vol.1," Interscience Tract, No. 15, 1963.

[25]

I. Kolar, P. W. Michor and J. Slovak, "Natural Operations in Differential Geometry," Springer-Verlag, Berlin, Heidelberg, 1993.

[26]

Y. Kosmann-Schwarzbach, Vector fields and generalized vector fields on fibered manifolds, Geometry and differential geometry (Proc. Conf. Univ. Haifa, Isral, 1979), (eds. R. Artzy and I. Vaisman), Lecture Notes in Math., Springer-Verlag, Heidelberg, 792 (1980), 307-355.

[27]

A. J. Ledger and K. Yano, The tangent bundle of a locally symmetric space, J. London Math. Soc., 40 (1963), 487-492. doi: 10.1112/jlms/s1-40.1.487.

[28]

P. Libermann and C. M. Marle, "Symplectic Geometry and Analytical Mechanics," D. Reidel Publishing Company, Kluwer Academic Publishers Group, 1987.

[29]

J. E. Marsden, A correspondence principle for momentum operators, Can. Math. Bull., 10 (1967), 247-250. doi: 10.4153/CMB-1967-023-x.

[30]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.

[31]

J. E. Marsden and A. Weinstein, The Hamiltonian structure of the Maxwell-Vlasov equations, Physica D, 4 (1982), 394-406. doi: 10.1016/0167-2789(82)90043-4.

[32]

J. E. Marsden, A group theoretic approach to the equations of plasma physics, Canad. Math. Bull., 25 (1982), 129-142. doi: 10.4153/CMB-1982-019-9.

[33]

J. E. Marsden, A. Weinstein, T. S. Ratiu, R. Schmid and R. G. Spencer, Hamiltonian systems with symmetry, coadjoint orbits and plasma physics, Proc. IUTAM-ISIMM Symposium on Modern Developments in Analytical Mechanics, Atti della Academia della Scienze di Torino, 117 (1983), 289-340.

[34]

J. E. Marsden, P. J. Morrison and A. Weinstein, Hamiltonian structure of the BBGKY hierarchy equations, Comtemp. Math., AMS, 28 (1984), 115-124.

[35]

D. McDuff and D. Salamon, "Introduction to Symplectic Topology," Second edition. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, 1998.

[36]

P. Michor, Manifolds of smooth maps, Cahiers Top. Geo. Diff., 19 (1978), 47-78.

[37]

P. J. Morrison, The Maxwell-Vlasov equations as a continuous Hamiltonian system, Phys. Lett. A, 80 (1980), 383-386. doi: 10.1016/0375-9601(80)90776-8.

[38]

P. J. Morrison and J. M. Greene, Noncanonical Hamiltonian density formulation of hydrodynamics and magnetohydrodynamics, Phys. Rev. Lett., 45 (1980), 790-794. doi: 10.1103/PhysRevLett.45.790.

[39]

P. J. Morrison, "Hamiltonian Field Description of One-Dimensional Poisson-Vlasov Equations," PPPL-1788, 1981.

[40]

P. J. Morrison, Poisson brackets for fluids and plasmas, in Mathematical Methods in Hydrodynamics and Integrability in Dynamical Systems, (La Jolla Institute, 1981) AIP Conf. Proc., (eds. M. Taber and Y. Treve), (AIP, New York), 88 (1982), 13-46.

[41]

P. J. Olver, "Applications of Lie Groups to Differential Equations," Graduate Texts in Mathematics, 107. Springer-Verlag, New York, 1986.

[42]

Z. Pogoda, Horizontal lifts and foliations, Suppl. ai Rendiconti del Circolo Mat. di Palermo, 21 (1989), 279-283.

[43]

T. S. Ratiu, R. Schmid and M. R. Adams, The Lie group structure of diffeomorphism groups and invertible Fourier integral operators, Infinite dimensional Groups with Applications, (ed. V. Kac), Math. Sci. Res. Inst. Publ., Springer, New York, 4 (1985), 1-69.

[44]

T. S. Ratiu and R. Schmid, The differentiable structure of three remarkable diffeomorphism groups, Mathematische Zeitschrift, 177 (1981), 81-100. doi: 10.1007/BF01214340.

[45]

S. Sasaki, On the differential geometry of tangent bundles of Riemannian manifolds, Tohoku Math. J. (2), 10 (1958), 338-354. doi: 10.2748/tmj/1178244668.

[46]

D. J. Saunders, "The Geometry of Jet Bundles," London Math. Soc., Lecture Notes Series, 142, Cambridge Univ. Press, 1989.

[47]

C. Scovel and A. Weinstein, Finite-dimensional Lie-Poisson approximations to Vlasov-Poisson equations, Comm. Pure Appl. Math., 47 (1994), 683-709. doi: 10.1002/cpa.3160470505.

[48]

J. Sniatycki and W. M. Tulczyjew, Generating forms of Lagrangian submanifolds, Indiana Univ. Math. J., 22 (1972), 267-275. doi: 10.1512/iumj.1972.22.22021.

[49]

T. Swift, A note on the space of lagrangian submanifolds of a symplectic 4-manifold, Journal of Geometry and Physics, 35 (2000), 183-192. doi: 10.1016/S0393-0440(00)00008-5.

[50]

S. Sternberg, "Lectures on Differential Geometry," Prentice-Hall, Inc., Englewood Cliffs, N. J., 1964

[51]

S. Tanno, An almost complex structure of the tangent bundle of an almost contact manifold, Tohoku Math. J. (2), 17 (1965), 7-15. doi: 10.2748/tmj/1178243616.

[52]

P. Tondeur, Structure presque klienne naturelle sur la fibrdes vecteurs covariants d'une vari riemannienne, C. R. Acad. Sci. Paris, 254 (1962), 407-408.

[53]

W. M. Tulczyjew, The Legendre transformation, Ann. Inst. Henri PoincarSec. A: Phys. Thr., XXVII (1977), 101-114.

[54]

W. M. Tulczyjew, A symplectic formulation of relativistic particle dynamics, Acta Physica Polonica B, 8 (1977), 431-447.

[55]

W. M. Tulczyjew, A symplectic formulation of particle dynamics, Differential Geometric Methods in Mathematical Physics, Lect. Notes in Math., 570 (1977), 457-463. doi: 10.1007/BFb0087795.

[56]

W. M. Tulczyjew, A symplectic framework of linear field theories, Ann. Mat. Pura Appl. (4), 130 (1981), 177-195.

[57]

W. M. Tulczyjew, The Euler-Lagrange resolution, Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en-Provence/Salamanca, 1979), 22-48, Lecture Notes in Math., 836, Springer, Berlin, 1980.

[58]

W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems and the Legendre transformation, Istituto Nazionale di Alta Matematica, Symposia Mathematica, 14 (1974), 247-258.

[59]

W. M. Tulczyjew and P. Urbanski, A slow and careful Legendre transformation for singular Lagrangians, Acta Phys. Polon. B, 30 (1999), 2909-2978.

[60]

K. Yano and E. T. Davies, On the tangent bundle of Finsler and Riemannian manifolds, Rend. Circ. Mat. Palermo (2), 12 (1963), 211-228. doi: 10.1007/BF02843966.

[61]

K. Yano and S. Kobayashi, Prolongations of tensor fields and connections to tangent bundles I. General Theory, J. Math. Soc. Japan, 18 (1966), 194-210. doi: 10.2969/jmsj/01820194.

[62]

K. Yano and A. J. Ledger, Linear connections on tangent bundles, J. London Math. Soc., 39 (1964), 495-500. doi: 10.1112/jlms/s1-39.1.495.

[63]

K. Yano and E. M. Patterson, Vertical and complete lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan, 19 (1967), 91-113. doi: 10.2969/jmsj/01910091.

[64]

I. Vaisman, Locally conformal symplectic manifolds, Int. J. Math. and Math. Sci., 8 (1985), 521-536. doi: 10.1155/S0161171285000564.

[65]

L. Van Hove, Sur le proble des relations entre les transformations unitaires de la manique quantique et les transformations canoniques de la manique classique, Acad. Roy. Belgique. Bull. Cl. Sci. (5), 37 (1951), 610-620.

[66]

C. Vizman, Some remarks on the quantomorphism group, Proc. of the Third International Workshop on Diff. Geom., Sibiu, Romania, Gen. Math., 5 (1997), 393-399.

[67]

C. Vizman, Abelian extensions via prequantization, Annals of Global Analysis and Geometry, 39 (2011), 361-386.

[68]

A. Weinstein, "Lectures on Symplectic Manifolds," Exp. lec. from the CBMS, Regional Conference Series in Mathematics, No. 29. A.M.S., Providence, 1977.

[69]

A. Weinstein, Symplectic manifolds and their Lagrangian submanifolds, Advan. in Math., 6 (1971), 329-346. doi: 10.1016/0001-8708(71)90020-X.

[70]

A. Weinstein, Lagrangian submanifolds and Hamiltonian systems, Annals of Math., 2 (1973), 377-410. doi: 10.2307/1970911.

[71]

A. Weinstein and P. J. Morrison, Comments on: The Maxwell-Vlasov equation as a continuous Hamiltonian system, Phys. Lett. A., 86 (1981), 235-236. doi: 10.1016/0375-9601(81)90496-5.

[1]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[2]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic and Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[3]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic and Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[4]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic and Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[5]

Alexander Bobylev, Irina Potapenko. On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data. Kinetic and Related Models, , () : -. doi: 10.3934/krm.2022020

[6]

Pierre-Emmanuel Jabin. A review of the mean field limits for Vlasov equations. Kinetic and Related Models, 2014, 7 (4) : 661-711. doi: 10.3934/krm.2014.7.661

[7]

Darryl D. Holm, Cesare Tronci. Geodesic Vlasov equations and their integrable moment closures. Journal of Geometric Mechanics, 2009, 1 (2) : 181-208. doi: 10.3934/jgm.2009.1.181

[8]

Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413-435. doi: 10.3934/jgm.2016014

[9]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[10]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[11]

Matthias Erbar, Max Fathi, Vaios Laschos, André Schlichting. Gradient flow structure for McKean-Vlasov equations on discrete spaces. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6799-6833. doi: 10.3934/dcds.2016096

[12]

Franco Flandoli, Marta Leocata, Cristiano Ricci. The Vlasov-Navier-Stokes equations as a mean field limit. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3741-3753. doi: 10.3934/dcdsb.2018313

[13]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic and Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[14]

Xianglong Duan. Sharp decay estimates for the Vlasov-Poisson and Vlasov-Yukawa systems with small data. Kinetic and Related Models, 2022, 15 (1) : 119-146. doi: 10.3934/krm.2021049

[15]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[16]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[17]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[18]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[19]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[20]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (69)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]