September  2012, 4(3): 271-296. doi: 10.3934/jgm.2012.4.271

Invariant sets forced by symmetry

1. 

Department of Mathematics, West Chester University, West Chester, PA 19383, United States

2. 

Zentrum Mathematik, TU München, Boltzmannstr. 3, 85747 Garching, Germany

3. 

Lehrstuhl A für Mathematik, RWTH Aachen, 52056 Aachen

Received  May 2011 Revised  May 2012 Published  October 2012

Given a linear (algebraic) group $G$ acting on real or complex $n$-space, we determine all the common invariant sets of $G$-symmetric vector fields. It turns out that the investigation of certain algebraic varieties is sufficient to characterize these invariant sets forced by symmetry. Toral, compact and reductive groups are discussed in some detail, and examples, including a Couette-Taylor system, are presented.
Citation: Frank D. Grosshans, Jürgen Scheurle, Sebastian Walcher. Invariant sets forced by symmetry. Journal of Geometric Mechanics, 2012, 4 (3) : 271-296. doi: 10.3934/jgm.2012.4.271
References:
[1]

Yu. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations,", Lecture Notes in Mathematics, 702 (1979).   Google Scholar

[2]

D. Birkes, Orbits of linear algebraic groups,, Ann. Math., 93 (1971), 459.  doi: 10.2307/1970884.  Google Scholar

[3]

A. Borel, "Linear Algebraic Groups,", $2^{nd}$ edition, (1992).   Google Scholar

[4]

T. Bröcker and T. tom Dieck, "Representations of Compact Lie Groups,", Springer-Verlag, (1985).   Google Scholar

[5]

P. Chossat, The reduction of equivariant dynamics to the orbit space of compact group actions,, Acta Appl. Math., 70 (2002), 71.  doi: 10.1023/A:1013970014204.  Google Scholar

[6]

D. Cox, J. Little and D. O'Shea, "Ideals, Varieties and Algorithms,", Springer-Verlag, (1997).   Google Scholar

[7]

R. Cushman and J. Sanders, A survey of invariant theory applied to normal forms of vector fields with nilpotent linear part,, in, 19 (1990), 82.   Google Scholar

[8]

E. B. Elliot, "An Introduction to the Algebra of Binary Quantics,", $2^{nd}$ edition, (1964).   Google Scholar

[9]

M. J. Field, Equivariant dynamical systems,, Trans. Amer. Math. Soc., 259 (1980), 185.  doi: 10.1090/S0002-9947-1980-0561832-4.  Google Scholar

[10]

B. Fiedler, B. Sandstede, A. Scheel and C. Wulff, Bifurcation from relative equilibria of noncompact group actions: Skew products, meanders, and drifts,, Documenta Math., 1 (1996), 479.   Google Scholar

[11]

G. Gaeta, F. D. Grosshans, J. Scheurle and S. Walcher, Reduction and reconstruction for symmetric ordinary differential equations,, J. Differential Equations, 244 (2008), 1810.  doi: 10.1016/j.jde.2008.01.009.  Google Scholar

[12]

K. Gatermann, "Computer Algebra Methods for Equivariant Dynamical Systems,", Lecture Notes in Mathematics, 1728 (2000).   Google Scholar

[13]

M. Golubitsky, V. G. LeBlanc and I. Melbourne, Meandering of the spiral tip: An alternative approach,, J. Nonlinear Sci., 7 (1997), 557.   Google Scholar

[14]

V. G. Guillemin and S. Sternberg, Remarks on a paper of Hermann,, Trans. Amer. Math. Soc., 130 (1968), 110.  doi: 10.1090/S0002-9947-1968-0217226-9.  Google Scholar

[15]

J. E. Humphreys, "Linear Algebraic Groups,", Springer-Verlag, (1975).   Google Scholar

[16]

M. Krupa, Bifurcations of relative equilibria,, SIAM J. Math. Anal., 21 (1990), 1453.  doi: 10.1137/0521081.  Google Scholar

[17]

A. G. Kushnirenko, An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one,, Funct. Anal. Appl., 1 (1967), 273.   Google Scholar

[18]

G. I. Lehrer and T. A. Springer, A note concerning fixed points of parabolic subgroups of unitary reflection groups,, Indag. Math., 10 (1999), 549.   Google Scholar

[19]

L. Michel, Points critiques des fonctions invariantes sur une $G$-variété,, C.R. Acad. Sc. Paris, 278 (1971), 433.   Google Scholar

[20]

D. I. Panyushev, On covariants of reductive algebraic groups,, Indag. Math., 13 (2002), 125.   Google Scholar

[21]

V. Poénaru, "Singularités $C^{\infty }$ en Présence de Symétrie,", Lecture Notes in Mathematics, 510 (1976).   Google Scholar

[22]

J. Scheurle, Some aspects of successive bifurcations in the Couette-Taylor problem,, Fields Inst. Comm., 5 (1996), 335.   Google Scholar

[23]

S. Walcher, On differential equations in normal form,, Math. Ann., 291 (1991), 293.  doi: 10.1007/BF01445209.  Google Scholar

[24]

S. Walcher, Multi-parameter symmetries of first order ordinary differential equations,, J. Lie Theory, 9 (1999), 249.   Google Scholar

show all references

References:
[1]

Yu. N. Bibikov, "Local Theory of Nonlinear Analytic Ordinary Differential Equations,", Lecture Notes in Mathematics, 702 (1979).   Google Scholar

[2]

D. Birkes, Orbits of linear algebraic groups,, Ann. Math., 93 (1971), 459.  doi: 10.2307/1970884.  Google Scholar

[3]

A. Borel, "Linear Algebraic Groups,", $2^{nd}$ edition, (1992).   Google Scholar

[4]

T. Bröcker and T. tom Dieck, "Representations of Compact Lie Groups,", Springer-Verlag, (1985).   Google Scholar

[5]

P. Chossat, The reduction of equivariant dynamics to the orbit space of compact group actions,, Acta Appl. Math., 70 (2002), 71.  doi: 10.1023/A:1013970014204.  Google Scholar

[6]

D. Cox, J. Little and D. O'Shea, "Ideals, Varieties and Algorithms,", Springer-Verlag, (1997).   Google Scholar

[7]

R. Cushman and J. Sanders, A survey of invariant theory applied to normal forms of vector fields with nilpotent linear part,, in, 19 (1990), 82.   Google Scholar

[8]

E. B. Elliot, "An Introduction to the Algebra of Binary Quantics,", $2^{nd}$ edition, (1964).   Google Scholar

[9]

M. J. Field, Equivariant dynamical systems,, Trans. Amer. Math. Soc., 259 (1980), 185.  doi: 10.1090/S0002-9947-1980-0561832-4.  Google Scholar

[10]

B. Fiedler, B. Sandstede, A. Scheel and C. Wulff, Bifurcation from relative equilibria of noncompact group actions: Skew products, meanders, and drifts,, Documenta Math., 1 (1996), 479.   Google Scholar

[11]

G. Gaeta, F. D. Grosshans, J. Scheurle and S. Walcher, Reduction and reconstruction for symmetric ordinary differential equations,, J. Differential Equations, 244 (2008), 1810.  doi: 10.1016/j.jde.2008.01.009.  Google Scholar

[12]

K. Gatermann, "Computer Algebra Methods for Equivariant Dynamical Systems,", Lecture Notes in Mathematics, 1728 (2000).   Google Scholar

[13]

M. Golubitsky, V. G. LeBlanc and I. Melbourne, Meandering of the spiral tip: An alternative approach,, J. Nonlinear Sci., 7 (1997), 557.   Google Scholar

[14]

V. G. Guillemin and S. Sternberg, Remarks on a paper of Hermann,, Trans. Amer. Math. Soc., 130 (1968), 110.  doi: 10.1090/S0002-9947-1968-0217226-9.  Google Scholar

[15]

J. E. Humphreys, "Linear Algebraic Groups,", Springer-Verlag, (1975).   Google Scholar

[16]

M. Krupa, Bifurcations of relative equilibria,, SIAM J. Math. Anal., 21 (1990), 1453.  doi: 10.1137/0521081.  Google Scholar

[17]

A. G. Kushnirenko, An analytic action of a semisimple Lie group in a neighborhood of a fixed point is equivalent to a linear one,, Funct. Anal. Appl., 1 (1967), 273.   Google Scholar

[18]

G. I. Lehrer and T. A. Springer, A note concerning fixed points of parabolic subgroups of unitary reflection groups,, Indag. Math., 10 (1999), 549.   Google Scholar

[19]

L. Michel, Points critiques des fonctions invariantes sur une $G$-variété,, C.R. Acad. Sc. Paris, 278 (1971), 433.   Google Scholar

[20]

D. I. Panyushev, On covariants of reductive algebraic groups,, Indag. Math., 13 (2002), 125.   Google Scholar

[21]

V. Poénaru, "Singularités $C^{\infty }$ en Présence de Symétrie,", Lecture Notes in Mathematics, 510 (1976).   Google Scholar

[22]

J. Scheurle, Some aspects of successive bifurcations in the Couette-Taylor problem,, Fields Inst. Comm., 5 (1996), 335.   Google Scholar

[23]

S. Walcher, On differential equations in normal form,, Math. Ann., 291 (1991), 293.  doi: 10.1007/BF01445209.  Google Scholar

[24]

S. Walcher, Multi-parameter symmetries of first order ordinary differential equations,, J. Lie Theory, 9 (1999), 249.   Google Scholar

[1]

Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603

[2]

Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375

[3]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[4]

Denis de Carvalho Braga, Luis Fernando Mello, Carmen Rocşoreanu, Mihaela Sterpu. Lyapunov coefficients for non-symmetrically coupled identical dynamical systems. Application to coupled advertising models. Discrete & Continuous Dynamical Systems - B, 2009, 11 (3) : 785-803. doi: 10.3934/dcdsb.2009.11.785

[5]

Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135

[6]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[7]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[8]

L. Yu. Glebsky and E. I. Gordon. On approximation of locally compact groups by finite algebraic systems. Electronic Research Announcements, 2004, 10: 21-28.

[9]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[10]

Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23

[11]

Michael Hochman. Smooth symmetries of $\times a$-invariant sets. Journal of Modern Dynamics, 2018, 13: 187-197. doi: 10.3934/jmd.2018017

[12]

Ji Li, Kening Lu, Peter W. Bates. Invariant foliations for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3639-3666. doi: 10.3934/dcds.2014.34.3639

[13]

Mohamed Boulanouar. On a Mathematical model with non-compact boundary conditions describing bacterial population (Ⅱ). Evolution Equations & Control Theory, 2019, 8 (2) : 247-271. doi: 10.3934/eect.2019014

[14]

Carsten Collon, Joachim Rudolph, Frank Woittennek. Invariant feedback design for control systems with lie symmetries - A kinematic car example. Conference Publications, 2011, 2011 (Special) : 312-321. doi: 10.3934/proc.2011.2011.312

[15]

Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239

[16]

Mikhail B. Sevryuk. Invariant tori in quasi-periodic non-autonomous dynamical systems via Herman's method. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 569-595. doi: 10.3934/dcds.2007.18.569

[17]

Xuemei Li, Zaijiu Shang. On the existence of invariant tori in non-conservative dynamical systems with degeneracy and finite differentiability. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4225-4257. doi: 10.3934/dcds.2019171

[18]

Alessandro Colombo, Nicoletta Del Buono, Luciano Lopez, Alessandro Pugliese. Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2911-2934. doi: 10.3934/dcdsb.2018166

[19]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[20]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]