\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dual pairs in resonances

Abstract Related Papers Cited by
  • A family of dual pairs of Poisson maps associated to $n:m$ and $n:-m$ resonances are investigated using Nambu-type Poisson structures.
    Mathematics Subject Classification: Primary: 53D17, 53D20; Secondary: 70H06.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Cushman and D. L. Rod, Reduction of the semisimple $1:1$ resonance, Physica D, 6 (1982), 105-112.

    [2]

    A. Elipe, Complete reduction of oscillators in resonance $p:q$, Phys. Rev. E, 61 (2000), 6477-6484.

    [3]

    F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations, Acta Appl. Math., 87 (2005), 93-121.

    [4]

    F. Gay-Balmaz and C. VizmanDual pairs in fluid dynamics, Ann. Global. Anal. Geom., to appear.

    [5]

    D. D. Holm, "Geometric Mechanics Part 1: Dynamics and Symmetry," World Scientific, London, 2008.

    [6]

    D. D. Holm and J. E. Marsden [2004], Momentum maps and measure-valued solutions (peakons, filaments and sheets) for the EPDiff equation, in The Breadth of Symplectic and Poisson Geometry, A Festshrift for Alan Weinstein, 203-235, Progr. Math., 232, J. E. Marsden and T. S. Ratiu, Editors, Birkhäuser Boston, Boston, MA, 2004.

    [7]

    T. Iwai, On reduction of two degrees of freedom Hamiltonian systems by an $S^1$ action and $SO_0(1,2)$ as a dynamical group, J. Math. Phys., 26 (1985), 885-893.

    [8]

    M. Kummer, On resonant nonlinearly coupled oscillators with two equal frequencies, Commun. Math. Phys., 48 (1976), 53-79.

    [9]

    M. Kummer, On resonant classical Hamiltonians with two equal frequencies, Commun. Math. Phys., 58 (1978), 85-112.doi: 10.1007/BF01624789.

    [10]

    M. Kummer, On the construction of the reduced phase space of a Hamiltonian system with symmetry, Indiana Univ. Math. J., 30 (1981), 281-291.doi: 10.1512/iumj.1981.30.30022.

    [11]

    M. Kummer, On resonant Hamiltonian systems with finitely many degrees of freedom, in "Local and Global Methods in Nonlinear Dynamics" (edited by A. V. Sáenz), Lecture Notes in Physics, Springer-Verlag, New York, 252 (1986), 19-31.

    [12]

    J. E. Marsden, Generic Bifurcation of Hamiltonian Systems with Symmetry, appendix to Golubitsky and Stewart, Physica D, 24 (1987), 391-405.

    [13]

    J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D, 7 (1983), 305-323.

    [14]

    A. S. Mishenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl., 12 (1978), 113-121.

    [15]

    J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction," Progress in Mathematics (Boston, Mass.), 222 Boston, Birkhäuser, 2004.

    [16]

    A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom., 18 (1983), 523-557.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(60) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return