Citation: |
[1] |
A. Coste, P. Dazord and A. Weinstein, Groupoï des symplectiques, Publications du Département de Mathématiques. Nouvelle Série. A, 2, Publ. Dép. Math. Nouvelle Sér. A, 87, Univ. Claude-Bernard, Lyon, 1987, pp. i-ii, 1-62. |
[2] |
T. J. Courant, Dirac manifolds, Trans. Am. Math. Soc., 319 (1990), 631-661.doi: 10.1090/S0002-9947-1990-0998124-1. |
[3] |
J. Hilgert and K.-H. Neeb, Lie Groups and Lie Algebras. (Lie-Gruppen und Lie-Algebren.), Braunschweig: Vieweg. 361 S., 1991. |
[4] |
B. Z. Iliev, "Handbook of Normal Frames and Coordinates," Progress in Mathematical Physics 42. Basel: Birkhäuser. xvi+441 pp., 2006. |
[5] |
D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids, J. Nonlinear Sci., 18 (2008), 221-276. (English).doi: 10.1007/s00332-007-9012-8. |
[6] |
M. Jotz and C. Ortiz, Foliated groupoids and their infinitesimal data, Preprint, arXiv:1109.4515v1. (2011). |
[7] |
M. Jotz, Infinitesimal objects associated to Dirac groupoids and their homogeneous spaces, Preprint, arXiv:1009.0713. (2010). |
[8] |
_______, "Dirac Group(oid)s and Their Homogeneous Spaces," Ph. D. thesis, EPFL, Lausanne, 2011. |
[9] |
_______, Dirac Lie groups, Dirac homogeneous spaces and the Theorem of Drinfel'd, arXiv:0910.1538, to appear in "Indiana University Mathematics Journal'' (2011). |
[10] |
M. Jotz, T. S. Ratiu and J. Śniatycki, Singular Dirac reduction, Trans. Amer. Math. Soc., 363 (2011), 2967-3013.doi: 10.1090/S0002-9947-2011-05220-7. |
[11] |
M. Jotz, T. Ratiu and M. Zambon, Invariant frames for vector bundles and applications, Geometriae Dedicata, 158 (2011), 1-12. |
[12] |
K. C. H. Mackenzie, "Lie Groupoids and Lie Algebroids in Differential Geometry," London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987.doi: 10.1017/CBO9780511661839. |
[13] |
_______, Double Lie algebroids and second-order geometry. II, Adv. Math., 154 (2000), 46-75.doi: 10.1006/aima.1999.1892. |
[14] |
_______, "General Theory of Lie Groupoids and Lie Algebroids," London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005. |
[15] |
I. Moerdijk and J. Mrčun, "Introduction to Foliations and Lie Groupoids," Cambridge Studies in Advanced Mathematics. 91. Cambridge: Cambridge University Press. 2003. x+173 pp. |
[16] |
J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348. (English).doi: 10.1088/0951-7715/19/6/006. |
[17] |
J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction," Progress in Mathematics (Boston, Mass.), 222. Boston, MA: Birkhäuser. 2004, xxxiv+497 pp. |
[18] |
C. Ortiz, Multiplicative Dirac structures on Lie groups, C. R., Math., Acad. Sci. Paris, 346 (2008), 1279-1282.doi: 10.1016/j.crma.2008.10.003. |
[19] |
_______, "Multiplicative Dirac Structures," Ph. D. thesis, Instituto de Matemática Pura e Aplicada, 2009. |
[20] |
J. Pradines, Remarque sur le groupoïde cotangent de Weinstein-Dazord, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 557-560. |
[21] |
P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. (3), 29 (1974), 699-713.doi: 10.1112/plms/s3-29.4.699. |
[22] |
_______, Integrability of systems of vector fields, J. London Math. Soc. (2), 21 (1980), 544-556. |
[23] |
H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Trans. Amer. Math. Soc., 180 (1973), 171-188.doi: 10.1090/S0002-9947-1973-0321133-2. |
[24] |
A. Weinstein, Coisotropic calculus and Poisson groupoids, J. Math. Soc. Japan, 40 (1988), 705-727.doi: 10.2969/jmsj/04040705. |
[25] |
_______, Lagrangian mechanics and groupoids, Mechanics day (Waterloo, ON, 1992), 207-231, Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996. |
[26] |
M. Zambon, Reduction of branes in generalized complex geometry, J. Symplectic Geom., 6 (2008), 353-378. |
[27] |
_______, Submanifolds in poisson geometry: A survey, Complex and Differential Geometry, Springer Proceedings in Mathematics, Springer Berlin, 8 (2010), 403-420. |