September  2012, 4(3): 313-332. doi: 10.3934/jgm.2012.4.313

The leaf space of a multiplicative foliation

1. 

Section de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

Received  November 2010 Revised  October 2011 Published  October 2012

We show that if a smooth multiplicative subbundle $S\subseteq TG$ on a groupoid $G⇉P$ is involutive and satisfies completeness conditions, then its leaf space $G/S$ inherits a groupoid structure over the space of leaves of $TP\cap S$ in $P$.
    As an application, a special class of Dirac groupoids is shown to project by forward Dirac maps to Poisson groupoids.
Citation: M. Jotz. The leaf space of a multiplicative foliation. Journal of Geometric Mechanics, 2012, 4 (3) : 313-332. doi: 10.3934/jgm.2012.4.313
References:
[1]

A. Coste, P. Dazord and A. Weinstein, Groupoï des symplectiques,, Publications du Département de Mathématiques. Nouvelle Série. A, 2 (1987), 1.   Google Scholar

[2]

T. J. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[3]

J. Hilgert and K.-H. Neeb, Lie Groups and Lie Algebras. (Lie-Gruppen und Lie-Algebren.),, Braunschweig: Vieweg. 361 S., (1991).   Google Scholar

[4]

B. Z. Iliev, "Handbook of Normal Frames and Coordinates,", Progress in Mathematical Physics 42. Basel: Birkhäuser. xvi+441 pp., 42 (2006).   Google Scholar

[5]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, J. Nonlinear Sci., 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[6]

M. Jotz and C. Ortiz, Foliated groupoids and their infinitesimal data,, Preprint, (2011).   Google Scholar

[7]

M. Jotz, Infinitesimal objects associated to Dirac groupoids and their homogeneous spaces,, Preprint, (2010).   Google Scholar

[8]

_______, "Dirac Group(oid)s and Their Homogeneous Spaces,", Ph. D. thesis, (2011).   Google Scholar

[9]

_______, Dirac Lie groups, Dirac homogeneous spaces and the Theorem of Drinfel'd,, , (2011).   Google Scholar

[10]

M. Jotz, T. S. Ratiu and J. Śniatycki, Singular Dirac reduction,, Trans. Amer. Math. Soc., 363 (2011), 2967.  doi: 10.1090/S0002-9947-2011-05220-7.  Google Scholar

[11]

M. Jotz, T. Ratiu and M. Zambon, Invariant frames for vector bundles and applications,, Geometriae Dedicata, 158 (2011), 1.   Google Scholar

[12]

K. C. H. Mackenzie, "Lie Groupoids and Lie Algebroids in Differential Geometry,", London Mathematical Society Lecture Note Series, 124 (1987).  doi: 10.1017/CBO9780511661839.  Google Scholar

[13]

_______, Double Lie algebroids and second-order geometry. II,, Adv. Math., 154 (2000), 46.  doi: 10.1006/aima.1999.1892.  Google Scholar

[14]

_______, "General Theory of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series, 213 (2005).   Google Scholar

[15]

I. Moerdijk and J. Mrčun, "Introduction to Foliations and Lie Groupoids,", Cambridge Studies in Advanced Mathematics. 91. Cambridge: Cambridge University Press. 2003. x+173 pp., 91 (2003).   Google Scholar

[16]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[17]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics (Boston, 222 (2004).   Google Scholar

[18]

C. Ortiz, Multiplicative Dirac structures on Lie groups,, C. R., 346 (2008), 1279.  doi: 10.1016/j.crma.2008.10.003.  Google Scholar

[19]

_______, "Multiplicative Dirac Structures,", Ph. D. thesis, (2009).   Google Scholar

[20]

J. Pradines, Remarque sur le groupoïde cotangent de Weinstein-Dazord,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 557.   Google Scholar

[21]

P. Stefan, Accessible sets, orbits, and foliations with singularities,, Proc. London Math. Soc. (3), 29 (1974), 699.  doi: 10.1112/plms/s3-29.4.699.  Google Scholar

[22]

_______, Integrability of systems of vector fields,, J. London Math. Soc. (2), 21 (1980), 544.   Google Scholar

[23]

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions,, Trans. Amer. Math. Soc., 180 (1973), 171.  doi: 10.1090/S0002-9947-1973-0321133-2.  Google Scholar

[24]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.  doi: 10.2969/jmsj/04040705.  Google Scholar

[25]

_______, Lagrangian mechanics and groupoids,, Mechanics day (Waterloo, (1992), 207.   Google Scholar

[26]

M. Zambon, Reduction of branes in generalized complex geometry,, J. Symplectic Geom., 6 (2008), 353.   Google Scholar

[27]

_______, Submanifolds in poisson geometry: A survey,, Complex and Differential Geometry, 8 (2010), 403.   Google Scholar

show all references

References:
[1]

A. Coste, P. Dazord and A. Weinstein, Groupoï des symplectiques,, Publications du Département de Mathématiques. Nouvelle Série. A, 2 (1987), 1.   Google Scholar

[2]

T. J. Courant, Dirac manifolds,, Trans. Am. Math. Soc., 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[3]

J. Hilgert and K.-H. Neeb, Lie Groups and Lie Algebras. (Lie-Gruppen und Lie-Algebren.),, Braunschweig: Vieweg. 361 S., (1991).   Google Scholar

[4]

B. Z. Iliev, "Handbook of Normal Frames and Coordinates,", Progress in Mathematical Physics 42. Basel: Birkhäuser. xvi+441 pp., 42 (2006).   Google Scholar

[5]

D. Iglesias, J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete nonholonomic Lagrangian systems on Lie groupoids,, J. Nonlinear Sci., 18 (2008), 221.  doi: 10.1007/s00332-007-9012-8.  Google Scholar

[6]

M. Jotz and C. Ortiz, Foliated groupoids and their infinitesimal data,, Preprint, (2011).   Google Scholar

[7]

M. Jotz, Infinitesimal objects associated to Dirac groupoids and their homogeneous spaces,, Preprint, (2010).   Google Scholar

[8]

_______, "Dirac Group(oid)s and Their Homogeneous Spaces,", Ph. D. thesis, (2011).   Google Scholar

[9]

_______, Dirac Lie groups, Dirac homogeneous spaces and the Theorem of Drinfel'd,, , (2011).   Google Scholar

[10]

M. Jotz, T. S. Ratiu and J. Śniatycki, Singular Dirac reduction,, Trans. Amer. Math. Soc., 363 (2011), 2967.  doi: 10.1090/S0002-9947-2011-05220-7.  Google Scholar

[11]

M. Jotz, T. Ratiu and M. Zambon, Invariant frames for vector bundles and applications,, Geometriae Dedicata, 158 (2011), 1.   Google Scholar

[12]

K. C. H. Mackenzie, "Lie Groupoids and Lie Algebroids in Differential Geometry,", London Mathematical Society Lecture Note Series, 124 (1987).  doi: 10.1017/CBO9780511661839.  Google Scholar

[13]

_______, Double Lie algebroids and second-order geometry. II,, Adv. Math., 154 (2000), 46.  doi: 10.1006/aima.1999.1892.  Google Scholar

[14]

_______, "General Theory of Lie Groupoids and Lie Algebroids,", London Mathematical Society Lecture Note Series, 213 (2005).   Google Scholar

[15]

I. Moerdijk and J. Mrčun, "Introduction to Foliations and Lie Groupoids,", Cambridge Studies in Advanced Mathematics. 91. Cambridge: Cambridge University Press. 2003. x+173 pp., 91 (2003).   Google Scholar

[16]

J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids,, Nonlinearity, 19 (2006), 1313.  doi: 10.1088/0951-7715/19/6/006.  Google Scholar

[17]

J.-P. Ortega and T. S. Ratiu, "Momentum Maps and Hamiltonian Reduction,", Progress in Mathematics (Boston, 222 (2004).   Google Scholar

[18]

C. Ortiz, Multiplicative Dirac structures on Lie groups,, C. R., 346 (2008), 1279.  doi: 10.1016/j.crma.2008.10.003.  Google Scholar

[19]

_______, "Multiplicative Dirac Structures,", Ph. D. thesis, (2009).   Google Scholar

[20]

J. Pradines, Remarque sur le groupoïde cotangent de Weinstein-Dazord,, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 557.   Google Scholar

[21]

P. Stefan, Accessible sets, orbits, and foliations with singularities,, Proc. London Math. Soc. (3), 29 (1974), 699.  doi: 10.1112/plms/s3-29.4.699.  Google Scholar

[22]

_______, Integrability of systems of vector fields,, J. London Math. Soc. (2), 21 (1980), 544.   Google Scholar

[23]

H. J. Sussmann, Orbits of families of vector fields and integrability of distributions,, Trans. Amer. Math. Soc., 180 (1973), 171.  doi: 10.1090/S0002-9947-1973-0321133-2.  Google Scholar

[24]

A. Weinstein, Coisotropic calculus and Poisson groupoids,, J. Math. Soc. Japan, 40 (1988), 705.  doi: 10.2969/jmsj/04040705.  Google Scholar

[25]

_______, Lagrangian mechanics and groupoids,, Mechanics day (Waterloo, (1992), 207.   Google Scholar

[26]

M. Zambon, Reduction of branes in generalized complex geometry,, J. Symplectic Geom., 6 (2008), 353.   Google Scholar

[27]

_______, Submanifolds in poisson geometry: A survey,, Complex and Differential Geometry, 8 (2010), 403.   Google Scholar

[1]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[2]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[5]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[6]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[7]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[9]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[10]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[11]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[12]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021004

[13]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[14]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[15]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[16]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[17]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021011

[18]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[19]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (38)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]