Advanced Search
Article Contents
Article Contents

Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics

Abstract Related Papers Cited by
  • In continuation of [7] we discuss metrics of the form $$ G^P_f(h,k)=\int_M \sum_{i=0}^p\Phi_i\big(Vol(f)\big)\ \bar{g}\big((P_i)_fh,k\big) vol(f^*\bar{g}) $$ on the space of immersions $Imm(M,N)$ and on shape space $B_i(M,N)=Imm(M,N)/{Diff}(M)$. Here $(N,\bar{g})$ is a complete Riemannian manifold, $M$ is a compact manifold, $f:M\to N$ is an immersion, $h$ and $k$ are tangent vectors to $f$ in the space of immersions, $f^*\bar{g}$ is the induced Riemannian metric on $M$, $vol(f^*\bar{g})$ is the induced volume density on $M$, $Vol(f)=\int_M vol(f^*\bar{g})$, $\Phi_i$ are positive real-valued functions, and $(P_i)_f$ are operators like some power of the Laplacian $\Delta^{f^*\bar{g}}$. We derive the geodesic equations for these metrics and show that they are sometimes well-posed with the geodesic exponential mapping a local diffeomorphism. The new aspect here are the weights $\Phi_i(Vol(f))$ which we use to construct scale invariant metrics and order 0 metrics with positive geodesic distance. We treat several concrete special cases in detail.
    Mathematics Subject Classification: Primary: 58B20, 58D15, 58E12.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Bauer and M. Bruveris, A new Riemannian setting for surface registration, 3nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy, (2011), 182-194.


    M. Bauer, M. Bruveris, C. Cotter, S. Marsland and P. W. MichorConstructing reparametrization invariant metrics on spaces of plane curves, arXiv:1207.5965.


    M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the riemannian metric with geodesic equation the KdV-equation, Ann. Global Analysis Geom., 41 (2012), 461-472.doi: 10.1007/s10455-011-9294-9.


    M. Bauer, M. Bruveris, P. Harms and P. W. MichorGeodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group, Ann. Glob. Anal. Geom., arXiv:1105.0327. doi: doi:10.1007/s10455-012-9353-x.


    M. Bauer, P. Harms and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space, SIAM J. Imaging Sci., 5 (2012), 244-310.doi: 10.1137/100807983.


    M. Bauer, P. Harms and P. W. Michor, Curvature weighted metrics on shape space of hypersurfaces in n-space, Differential Geometry and its Applications, 30 (2012), 33-41.doi: 10.1016/j.difgeo.2011.10.002.


    M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces, Journal of Geometric Mechanics, 3 (2011), 389-438.


    M. Bauer, P. Harms and P. W. MichorSobolev metrics on the manifold of all Riemannian metrics, To appear in "Journal of Differential Geometry," arXiv:1102.3347.


    M. Bauer, "Almost Local Metrics on Shape Space of Surfaces," Ph.D thesis, University of Vienna, 2010.


    A. L. Besse, "Einstein Manifolds," Classics in Mathematics. Springer-Verlag, Berlin, 2008.


    P. Harms, "Sobolev Metrics on Shape Space of Surfaces," Ph.D Thesis, University of Vienna, 2010.


    P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms, Doc. Math., 10 (2005), 217-245 (electronic).


    P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves, J. Eur. Math. Soc. (JEMS), 8 (2006), 1-48.doi: 10.4171/JEMS/37.


    P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach, Appl. Comput. Harmon. Anal., 23 (2007), 74-113.doi: 10.1016/j.acha.2006.07.004.


    J. Peetre, Une caractérisation abstraite des opérateurs différentiels, Math. Scand., 7 (1959), 211-218.


    J. Peetre, Réctification à l'article "Une caractérisation abstraite des opérateurs différentiels", Math. Scand., 8 (1960), 116-120.


    J. Shah, $H^0$-type Riemannian metrics on the space of planar curves, Quart. Appl. Math., 66 (2008), 123-137.


    M. A. Shubin, "Pseudodifferential Operators and Spectral Theory," Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1987.doi: 10.1007/978-3-642-96854-9.


    Jan Slovák, Peetre theorem for nonlinear operators, Ann. Global Anal. Geom., 6 (1988), 273-283.doi: 10.1007/BF00054575.


    A. Yezzi and A. Mennucci, Conformal riemannian metrics in space of curves, EUSIPCO, (2004).


    A. Yezzi and A. Mennucci, Metrics in the space of curves, arXiv:math/0412454, December (2004).


    A. Yezzi and A. Mennucci, Conformal metrics and true "gradient flows" for curves, in "Proceedings of the Tenth IEEE International Conference on Computer Vision," 1, 913-919, Washington, (2005). IEEE Computer Society.


    L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics, Rend. Lincei Mat. Appl., 9 (2008), 25-57.doi: 10.4171/RLM/506.

  • 加载中

Article Metrics

HTML views() PDF downloads(136) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint