December  2012, 4(4): 397-419. doi: 10.3934/jgm.2012.4.397

Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds

1. 

Departamento de Matemática Aplicada IV. Universitat Politècnica de Catalunya-BarcelonaTech., Campus Norte, Ed. C-3. C/ Jordi Girona 1, E-08034 Barcelona, Spain

2. 

Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA, and Departamento de Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés, Madrid, Spain

3. 

Departamento de Matemática Aplicada IV, Universitat Politècnica de Catalunya-BarcelonaTech., Edificio C-3, Campus Norte UPC. C/ Jordi Girona 1, E-08034 Barcelona, Spain

4. 

Departamento de Matemática Aplicada IV. Universitat Politècnica de Catalunya-BarcelonaTech., Edificio C-3, Campus Norte UPC, C/ Jordi Girona 1. 08034 Barcelona

Received  May 2012 Revised  October 2012 Published  January 2013

It is shown that the geometry of locally homogeneous multisymplectic manifolds (that is, smooth manifolds equipped with a closed nondegenerate form of degree $> 1$, which is locally homogeneous of degree $k$ with respect to a local Euler field) is characterized by their automorphisms. Thus, locally homogeneous multisymplectic manifolds extend the family of classical geometries possessing a similar property: symplectic, volume and contact. The proof of the first result relies on the characterization of invariant differential forms with respect to the graded Lie algebra of infinitesimal automorphisms, and on the study of the local properties of Hamiltonian vector fields on locally multisymplectic manifolds. In particular it is proved that the group of multisymplectic diffeomorphisms acts (strongly locally) transitively on the manifold. It is also shown that the graded Lie algebra of infinitesimal automorphisms of a locally homogeneous multisymplectic manifold characterizes their multisymplectic diffeomorphisms.
Citation: Arturo Echeverría-Enríquez, Alberto Ibort, Miguel C. Muñoz-Lecanda, Narciso Román-Roy. Invariant forms and automorphisms of locally homogeneous multisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (4) : 397-419. doi: 10.3934/jgm.2012.4.397
References:
[1]

C. J. Atkin and J. Grabowsk, Homomorphisms of the Lie algebras associated with a symplectic manifold,, Comp. Math., 76 (1990), 315.   Google Scholar

[2]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique,, Comment. Math. Helv., 53 (1978), 174.  doi: 10.1007/BF02566074.  Google Scholar

[3]

A. Banyaga, On isomorphic classical diffeomorphism groups. I,, Proc. Am. Math. Soc., 98 (1986), 113.  doi: 10.2307/2045779.  Google Scholar

[4]

A. Banyaga, On isomorphic classical diffeomorphism groups. II,, J. Diff. Geom., 28 (1988), 23.   Google Scholar

[5]

A. Banyaga, The structure of classical diffeomorphism groups,, in, 400 (1997), 113.   Google Scholar

[6]

A. Banyaga and A. McInerney, On isomorphic classical diffeomorphism groups. III,, Ann. Global Anal. Geom., 13 (1995), 117.  doi: 10.1007/BF01120327.  Google Scholar

[7]

W. M. Boothby, Transitivity of the automorphisms of certain geometric structures,, Amer. Math. Soc., 137 (1969), 93.   Google Scholar

[8]

R. L. Bryant, Metrics with exceptional holonomy,, Ann. Math. (2), 126 (1987), 525.  doi: 10.2307/1971360.  Google Scholar

[9]

F. Cantrijn, A. Ibort and M. de León, Hamiltonian structures on multisymplectic manifolds,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.   Google Scholar

[10]

F. Cantrijn, A. Ibort and M. de León, On the geometry of multisymplectic manifolds,, J. Austral. Math. Soc. Ser., 66 (1999), 303.   Google Scholar

[11]

J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Diff. Geom. Appl., 1 (1991), 345.  doi: 10.1016/0926-2245(91)90013-Y.  Google Scholar

[12]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román-Roy, Canonical transformation theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961.  doi: 10.1063/1.526864.  Google Scholar

[13]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector fields and connections. Setting Lagrangian equations in field theories,, J. Math. Phys., 39 (1998), 4578.  doi: 10.1063/1.532525.  Google Scholar

[14]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries,, J. Phys. A: Math. Gen., 32 (1999), 8461.  doi: 10.1088/0305-4470/32/48/309.  Google Scholar

[15]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories,, J. Math. Phys., 41 (2000), 7402.  doi: 10.1063/1.1308075.  Google Scholar

[16]

A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2801875.  Google Scholar

[17]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,", World Sci. Pub. Co., (1997).   Google Scholar

[18]

J. Gomis, J. Llosa and N. Román-Roy, Lee Hwa Chung theorem for presymplectic manifolds. Canonical transformations for constrained systems,, J. Math. Phys., 25 (1984), 1348.  doi: 10.1063/1.526303.  Google Scholar

[19]

M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism,, in, (1991), 203.   Google Scholar

[20]

J. Grabowski, "Isomorphisms of Poisson and Jacobi Brackets,", Banach Center Publ., 51 (2000), 79.   Google Scholar

[21]

F. Helein and J. Kouneiher, Finite dimensional Hamiltonian formalism for gauge and quantum field theories,, J. Math. Phys., 43 (2002), 2306.  doi: 10.1063/1.1467710.  Google Scholar

[22]

L. Hwa Chung, The universal integral invariants of Hamiltonian systems and applications to the theory of canonical transformations,, Proc. Roy. Soc., LXIIA (1947), 237.   Google Scholar

[23]

L. A. Ibort, Multisymplectic geometry: Generic and exceptional,, in, (2000), 79.   Google Scholar

[24]

I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space,, Rep. Math. Phys., 41 (1998), 49.  doi: 10.1016/S0034-4877(98)80182-1.  Google Scholar

[25]

J. Kijowski and W. M. Tulckzyjew, "A Symplectic Framework for Field Theories,", Lecture Notes in Physics \textbf{107}, 107 (1979).   Google Scholar

[26]

M. de León D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories,, in, (2003), 21.   Google Scholar

[27]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Symmetries in classical field theories,, Int. J. Geom. Meth. Mod. Phys., 1 (2004), 651.  doi: 10.1142/S0219887804000290.  Google Scholar

[28]

J. Llosa and N. Román-Roy, Invariant forms and Hamiltonian systems: A geometrical setting,, Int. J. Theor. Phys., 27 (1988), 1533.  doi: 10.1007/BF00669290.  Google Scholar

[29]

C. M. Marle, The Schouten-Nijenhuis bracket and interior products,, J. Geom. Phys., 23 (1997), 350.  doi: 10.1016/S0393-0440(97)80009-5.  Google Scholar

[30]

J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves,, Math. Proc. Camb. Phil. Soc., 125 (1999), 553.  doi: 10.1017/S0305004198002953.  Google Scholar

[31]

J. Martinet, Sur les singularités des formes différentielles,, Ann. Inst. Fourier, 20 (1970), 95.   Google Scholar

[32]

H. Omori, "Infinite Dimensional Lie Transformation Groups,", Lect. Notes in Maths., 427 (1974).   Google Scholar

[33]

C. Paufler and H. Romer, Geometry of Hamiltonian $n$-vector fields in multisymplectic field theory,, J. Geom. Phys., 44 (2002), 52.  doi: 10.1016/S0393-0440(02)00031-1.  Google Scholar

[34]

L. E. Pursell and M. E. Shanks, The Lie algebra of smooth manifolds,, Proc. Am. Math. Soc., 5 (1954), 468.   Google Scholar

[35]

N. Román-Roy, A. M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories,, J. Geom. Mech., 3 (2011), 113.   Google Scholar

[36]

G. Sardanashvily, "Generalized Hamiltonian Formalism for Field Theory,", World Scientific Pub., (1995).  doi: 10.1142/9789812831484.  Google Scholar

[37]

D. J. Saunders, "The Geometry of Jet Bundles,", London Math. Soc. Lect. Notes Ser. \textbf{142}, 142 (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[38]

M. Shafiee, On Hamiltonian group of multisymplectic manifolds,, Int. J. Geom. Meth. Mod. Phys., 8 (2011), 929.  doi: 10.1142/S0219887811005506.  Google Scholar

[39]

F. Takens, Characterization of a differentiable structure by its group of diffeomorphisms,, Bol Soc. Brasil. Mat., 10 (1979), 17.  doi: 10.1007/BF02588337.  Google Scholar

[40]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Hamiltoniènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 15.   Google Scholar

[41]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Lagrangiènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 675.   Google Scholar

[42]

M. Wechsler, Homeomorphism groups of certain topological spaces,, Ann. Math., 62 (1954), 360.   Google Scholar

show all references

References:
[1]

C. J. Atkin and J. Grabowsk, Homomorphisms of the Lie algebras associated with a symplectic manifold,, Comp. Math., 76 (1990), 315.   Google Scholar

[2]

A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une forme symplectique,, Comment. Math. Helv., 53 (1978), 174.  doi: 10.1007/BF02566074.  Google Scholar

[3]

A. Banyaga, On isomorphic classical diffeomorphism groups. I,, Proc. Am. Math. Soc., 98 (1986), 113.  doi: 10.2307/2045779.  Google Scholar

[4]

A. Banyaga, On isomorphic classical diffeomorphism groups. II,, J. Diff. Geom., 28 (1988), 23.   Google Scholar

[5]

A. Banyaga, The structure of classical diffeomorphism groups,, in, 400 (1997), 113.   Google Scholar

[6]

A. Banyaga and A. McInerney, On isomorphic classical diffeomorphism groups. III,, Ann. Global Anal. Geom., 13 (1995), 117.  doi: 10.1007/BF01120327.  Google Scholar

[7]

W. M. Boothby, Transitivity of the automorphisms of certain geometric structures,, Amer. Math. Soc., 137 (1969), 93.   Google Scholar

[8]

R. L. Bryant, Metrics with exceptional holonomy,, Ann. Math. (2), 126 (1987), 525.  doi: 10.2307/1971360.  Google Scholar

[9]

F. Cantrijn, A. Ibort and M. de León, Hamiltonian structures on multisymplectic manifolds,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225.   Google Scholar

[10]

F. Cantrijn, A. Ibort and M. de León, On the geometry of multisymplectic manifolds,, J. Austral. Math. Soc. Ser., 66 (1999), 303.   Google Scholar

[11]

J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order field theories,, Diff. Geom. Appl., 1 (1991), 345.  doi: 10.1016/0926-2245(91)90013-Y.  Google Scholar

[12]

J. F. Cariñena, J. Gomis, L. A. Ibort and N. Román-Roy, Canonical transformation theory for presymplectic systems,, J. Math. Phys., 26 (1985), 1961.  doi: 10.1063/1.526864.  Google Scholar

[13]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector fields and connections. Setting Lagrangian equations in field theories,, J. Math. Phys., 39 (1998), 4578.  doi: 10.1063/1.532525.  Google Scholar

[14]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Multivector field formulation of Hamiltonian field theories: Equations and symmetries,, J. Phys. A: Math. Gen., 32 (1999), 8461.  doi: 10.1088/0305-4470/32/48/309.  Google Scholar

[15]

A. Echeverría-Enríquez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometry of multisymplectic Hamiltonian first-order field theories,, J. Math. Phys., 41 (2000), 7402.  doi: 10.1063/1.1308075.  Google Scholar

[16]

A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2801875.  Google Scholar

[17]

G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,", World Sci. Pub. Co., (1997).   Google Scholar

[18]

J. Gomis, J. Llosa and N. Román-Roy, Lee Hwa Chung theorem for presymplectic manifolds. Canonical transformations for constrained systems,, J. Math. Phys., 25 (1984), 1348.  doi: 10.1063/1.526303.  Google Scholar

[19]

M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism,, in, (1991), 203.   Google Scholar

[20]

J. Grabowski, "Isomorphisms of Poisson and Jacobi Brackets,", Banach Center Publ., 51 (2000), 79.   Google Scholar

[21]

F. Helein and J. Kouneiher, Finite dimensional Hamiltonian formalism for gauge and quantum field theories,, J. Math. Phys., 43 (2002), 2306.  doi: 10.1063/1.1467710.  Google Scholar

[22]

L. Hwa Chung, The universal integral invariants of Hamiltonian systems and applications to the theory of canonical transformations,, Proc. Roy. Soc., LXIIA (1947), 237.   Google Scholar

[23]

L. A. Ibort, Multisymplectic geometry: Generic and exceptional,, in, (2000), 79.   Google Scholar

[24]

I. V. Kanatchikov, Canonical structure of classical field theory in the polymomentum phase space,, Rep. Math. Phys., 41 (1998), 49.  doi: 10.1016/S0034-4877(98)80182-1.  Google Scholar

[25]

J. Kijowski and W. M. Tulckzyjew, "A Symplectic Framework for Field Theories,", Lecture Notes in Physics \textbf{107}, 107 (1979).   Google Scholar

[26]

M. de León D. Martín de Diego and A. Santamaría-Merino, Tulczyjew triples and Lagrangian submanifolds in classical field theories,, in, (2003), 21.   Google Scholar

[27]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Symmetries in classical field theories,, Int. J. Geom. Meth. Mod. Phys., 1 (2004), 651.  doi: 10.1142/S0219887804000290.  Google Scholar

[28]

J. Llosa and N. Román-Roy, Invariant forms and Hamiltonian systems: A geometrical setting,, Int. J. Theor. Phys., 27 (1988), 1533.  doi: 10.1007/BF00669290.  Google Scholar

[29]

C. M. Marle, The Schouten-Nijenhuis bracket and interior products,, J. Geom. Phys., 23 (1997), 350.  doi: 10.1016/S0393-0440(97)80009-5.  Google Scholar

[30]

J. E. Marsden and S. Shkoller, Multisymplectic geometry, covariant Hamiltonians and water waves,, Math. Proc. Camb. Phil. Soc., 125 (1999), 553.  doi: 10.1017/S0305004198002953.  Google Scholar

[31]

J. Martinet, Sur les singularités des formes différentielles,, Ann. Inst. Fourier, 20 (1970), 95.   Google Scholar

[32]

H. Omori, "Infinite Dimensional Lie Transformation Groups,", Lect. Notes in Maths., 427 (1974).   Google Scholar

[33]

C. Paufler and H. Romer, Geometry of Hamiltonian $n$-vector fields in multisymplectic field theory,, J. Geom. Phys., 44 (2002), 52.  doi: 10.1016/S0393-0440(02)00031-1.  Google Scholar

[34]

L. E. Pursell and M. E. Shanks, The Lie algebra of smooth manifolds,, Proc. Am. Math. Soc., 5 (1954), 468.   Google Scholar

[35]

N. Román-Roy, A. M. Rey, M. Salgado and S. Vilariño, On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories,, J. Geom. Mech., 3 (2011), 113.   Google Scholar

[36]

G. Sardanashvily, "Generalized Hamiltonian Formalism for Field Theory,", World Scientific Pub., (1995).  doi: 10.1142/9789812831484.  Google Scholar

[37]

D. J. Saunders, "The Geometry of Jet Bundles,", London Math. Soc. Lect. Notes Ser. \textbf{142}, 142 (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[38]

M. Shafiee, On Hamiltonian group of multisymplectic manifolds,, Int. J. Geom. Meth. Mod. Phys., 8 (2011), 929.  doi: 10.1142/S0219887811005506.  Google Scholar

[39]

F. Takens, Characterization of a differentiable structure by its group of diffeomorphisms,, Bol Soc. Brasil. Mat., 10 (1979), 17.  doi: 10.1007/BF02588337.  Google Scholar

[40]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Hamiltoniènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 15.   Google Scholar

[41]

W. M. Tulczyjew, Les sous-variétés Lagrangiennes et la dynamique Lagrangiènne,, C.R. Acad Sci. Paris (Sér. A), 283 (1976), 675.   Google Scholar

[42]

M. Wechsler, Homeomorphism groups of certain topological spaces,, Ann. Math., 62 (1954), 360.   Google Scholar

[1]

Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93-138. doi: 10.3934/jgm.2018004

[2]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[3]

M. P. de Oliveira. On 3-graded Lie algebras, Jordan pairs and the canonical kernel function. Electronic Research Announcements, 2003, 9: 142-151.

[4]

Özlem Orhan, Teoman Özer. New conservation forms and Lie algebras of Ermakov-Pinney equation. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 735-746. doi: 10.3934/dcdss.2018046

[5]

Pablo Aguirre, Eusebius J. Doedel, Bernd Krauskopf, Hinke M. Osinga. Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1309-1344. doi: 10.3934/dcds.2011.29.1309

[6]

José F. Alves, Davide Azevedo. Statistical properties of diffeomorphisms with weak invariant manifolds. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 1-41. doi: 10.3934/dcds.2016.36.1

[7]

Aristophanes Dimakis, Folkert Müller-Hoissen. Bidifferential graded algebras and integrable systems. Conference Publications, 2009, 2009 (Special) : 208-219. doi: 10.3934/proc.2009.2009.208

[8]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[9]

Tomas Johnson, Warwick Tucker. Automated computation of robust normal forms of planar analytic vector fields. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 769-782. doi: 10.3934/dcdsb.2009.12.769

[10]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[11]

Narciso Román-Roy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$-symplectic, $k$-cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113-137. doi: 10.3934/jgm.2011.3.113

[12]

Pedro Daniel Prieto-Martínez, Narciso Román-Roy. A new multisymplectic unified formalism for second order classical field theories. Journal of Geometric Mechanics, 2015, 7 (2) : 203-253. doi: 10.3934/jgm.2015.7.203

[13]

Ricardo Miranda Martins, Marco Antonio Teixeira. On the similarity of Hamiltonian and reversible vector fields in 4D. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1257-1266. doi: 10.3934/cpaa.2011.10.1257

[14]

Charles-Michel Marle. A property of conformally Hamiltonian vector fields; Application to the Kepler problem. Journal of Geometric Mechanics, 2012, 4 (2) : 181-206. doi: 10.3934/jgm.2012.4.181

[15]

Ale Jan Homburg. Heteroclinic bifurcations of $\Omega$-stable vector fields on 3-manifolds. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 559-580. doi: 10.3934/dcds.1998.4.559

[16]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[17]

Isaac A. García, Jaume Giné. Non-algebraic invariant curves for polynomial planar vector fields. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 755-768. doi: 10.3934/dcds.2004.10.755

[18]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[19]

Jordi Gaset, Narciso Román-Roy. New multisymplectic approach to the Metric-Affine (Einstein-Palatini) action for gravity. Journal of Geometric Mechanics, 2019, 11 (3) : 361-396. doi: 10.3934/jgm.2019019

[20]

Tracy L. Payne. Anosov automorphisms of nilpotent Lie algebras. Journal of Modern Dynamics, 2009, 3 (1) : 121-158. doi: 10.3934/jmd.2009.3.121

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

[Back to Top]