\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids

Abstract Related Papers Cited by
  • This paper develops the notion of implicit Lagrangian systems on Lie algebroids and a Hamilton--Jacobi theory for this type of system. The Lie algebroid framework provides a natural generalization of classical tangent bundle geometry. We define the notion of an implicit Lagrangian system on a Lie algebroid $E$ using Dirac structures on the Lie algebroid prolongation $\mathcal{T}^E E^*$. This setting includes degenerate Lagrangian systems with nonholonomic constraints on Lie algebroids.
    Mathematics Subject Classification: Primary: 37J60, 53D17, 70H20; Secondary: 17B66, 70F25, 70G45, 70H45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. E. Marsden, "Foundations of Mechanics," Addison-Wesley, 2nd edition, 1978.

    [2]

    P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics. Hamilton-Jacobi equation and applications, Nonlinearity, 23 (2010), 1887-1918.doi: 10.1088/0951-7715/23/8/006.

    [3]

    L. Bates and J. Śniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115.doi: 10.1016/0034-4877(93)90073-N.

    [4]

    A. M. Bloch, "Nonholonomic Mechanics and Control," Interdisciplinary Applied Mathematics Series 24, Springer-Verlag New-York, 2003.doi: 10.1007/b97376.

    [5]

    A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and non-linear L-C circuits, in "Differential Geometry and Control (Boulder, CO, 1997)", Proc. Sympos. Pure Math., 64, AMS, Providence, RI (1999), 103-117.

    [6]

    A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry, Arch. Rational Mech. Anal., 136 (1996), 21-99.doi: 10.1007/BF02199365.

    [7]

    J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Munőz Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417-1458.doi: 10.1142/S0219887806001764.

    [8]

    J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. C. Munőz Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431-454.doi: 10.1142/S0219887810004385.

    [9]

    J. Cortés and E. Martínez, Mechanical control systems on Lie algebroids, IMA J. Math. Control Inform., 21 (2004), 457-492.doi: 10.1093/imamci/21.4.457.

    [10]

    J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete Contin. Dyn. Syst., 24 (2009), 213-271.doi: 10.3934/dcds.2009.24.213.

    [11]

    T. J. Courant, Dirac manifolds, Trans. Amer. Math. Soc., 319 (1990), 631-661.doi: 10.2307/2001258.

    [12]

    T. J. Courant and A. D. Weinstein, "Beyond Poisson Structures," Travaux en Cours, 27, Hermann Paris (1988), 39-49.

    [13]

    M. Dalsmo and A. J. van der Schaft, On representations and integrability of mathematical structures in energy-conserving physical systems, SIAM J. Control Optim., 37 (1998), 54-91.doi: 10.1137/S0363012996312039.

    [14]

    Y. N. Fedorov and D. V. Zenkov, Discrete nonholonomic LL systems on Lie groups, Nonlinearity, 18 (2005), 2211-2241.doi: 10.1088/0951-7715/18/5/017.

    [15]

    M. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints, J. Math. Phys., 19 (1978), 2388-2399.doi: 10.1063/1.523597.

    [16]

    K. Grabowska and J. Grabowski, Dirac algebroids in Lagrangian and Hamiltonian mechanics, J. Geom. Phys., 61 (2011), 2233-2253.doi: 10.1016/j.geomphys.2011.06.018.

    [17]

    K. Grabowska, P. Urbański and J. Grabowski, Geometrical mechanics on algebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559-575.doi: 10.1142/S0219887806001259.

    [18]

    M. Henneaux and C. Teitelboim, "Quantization of Gauge Systems," Princeton University Press, Princeton, N.J., 1992.

    [19]

    P. J. Higgins and K. Mackenzie, Algebraic constructions in the category of Lie algebroids, J. of Algebra, 129 (1990), 194-230.doi: 10.1016/0021-8693(90)90246-K.

    [20]

    D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, J. Phys. A, 41 (2008), 015205.

    [21]

    D. Iglesias, J. C. Marrero, D. Martín de Diego and D. Sosa, Singular Lagrangian systems and variational constrained mechanics on Lie algebroids, Dyn. Syst., 23 (2008), 351-397.doi: 10.1080/14689360802294220.

    [22]

    J. Koiller, Reduction of some classical nonholonomic systems with symmetry, Arch. Rational Mech. Anal., 118 (1992), 113-148.doi: 10.1007/BF00375092.

    [23]

    W. S. Koon and J. E. Marsden, The Hamiltonian and Lagrangian approaches to the dynamics of nonholonomic systems, Rep. Math. Phys., 40 (1997), 21-62.doi: 10.1016/S0034-4877(97)85617-0.

    [24]

    W. S. Koon and J. E. Marsden, Poisson reduction for nonholonomic mechanical systems with symmetry, Rep. Math. Phys., 42 (1998), 101-134.doi: 10.1016/S0034-4877(98)80007-4.

    [25]

    M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints, J. Math. Phys., 53 (2012), 072905 (29 pages).

    [26]

    M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.doi: 10.3934/jgm.2010.2.159.

    [27]

    M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A, 38 (2005), R241-R308.doi: 10.1088/0305-4470/38/24/R01.

    [28]

    K. C. H. Mackenzie, "General Theory of Lie Groupoids and Lie Algebroids," London Mathematical Society Lecture Note Series, 213. Cambridge University Press, Cambridge, 2005.

    [29]

    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry," second ed., Texts in Applied Mathematics, 17, Springer-Verlag, 1999.

    [30]

    E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.doi: 10.1023/A:1011965919259.

    [31]

    E. Martínez, Geometric formulation of Mechanics on Lie algebroids, in "Proceedings of the VIII Fall Workshop on Geometry and Physics, Medina del Campo, 1999", Publ. R. Soc. Mat. Esp., 2 (2001), 209-222.

    [32]

    E. MartínezClassical field theory on Lie algebroids: Multisymplectic formalism, preprint arXiv:math.DG/0411352.

    [33]

    B. M. Maschke, A. J. van der Schaft and P. C. Breedveld, An intrinsic Hamiltonian formulation of the dynamics of LC-circuits, IEEE Trans. Circuits Syst., 42 (1995), 73-82.doi: 10.1109/81.372847.

    [34]

    T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems, J. Phys. A, 38 (2005), 1097-1111.doi: 10.1088/0305-4470/38/5/011.

    [35]

    J. Neimark and N. Fufaev, "Dynamics of Nonholonomic Systems," Translation of Mathematical Monographs, 33, AMS, Providence, RI, 1972.

    [36]

    T. Ohsawa and A. M. Bloch, Nonholonomic Hamilton-Jacobi equation and integrability, J. Geom. Mech., 1 (2009), 461-481.doi: 10.3934/jgm.2009.1.461.

    [37]

    T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization, J. Geom. Phys., 61 (2011), 1263-1291.doi: 10.1016/j.geomphys.2011.02.015.

    [38]

    A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233.doi: 10.1016/0034-4877(94)90038-8.

    [39]

    A. J. van der Schaft and B. M. Maschke, The Hamiltonian formulation of energy conserving physical systems with external ports, Arch. Elektr. Übertrag., 49 (1995), 362-371.

    [40]

    A. M. Vershik and L. D. Fadeev, Lagrangian mechanics in invariant form, Sel. Math. Sov., 1 (1981), 339-350.

    [41]

    R. W. Weber, Hamiltonian systems with constraints and their meaning in mechanics, Arch. Ration. Mech. Anal., 91 (1986), 309-335.doi: 10.1007/BF00282337.

    [42]

    A. D. Weinstein, Lagrangian Mechanics and groupoids, in "Mechanics day (Waterloo, ON, 1992)", Fields Inst. Comm., 7 (1996), 207-231.

    [43]

    H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems, J. Geom. Phys., 57 (1) (2006), 133-156.doi: 10.1016/j.geomphys.2006.02.009.

    [44]

    H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics. Part II: Variational structures, J. Geom. Phys., 57 (2006), 209-250.doi: 10.1016/j.geomphys.2006.02.012.

    [45]

    H. Yoshimura and J. E. Marsden, Dirac cotangent bundle reduction, J. Geom. Mech., 1 (2009), 87-158.doi: 10.3934/jgm.2009.1.87.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(93) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return