December  2012, 4(4): 443-467. doi: 10.3934/jgm.2012.4.443

The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity

1. 

Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland, Poland

Received  November 2011 Revised  August 2012 Published  January 2013

We study the Hess--Appelrot case of the Euler--Poisson system which describes dynamics of a rigid body about a fixed point. We prove existence of an invariant torus which supports hyperbolic or parabolic or elliptic periodic or elliptic quasi--periodic dynamics. In the elliptic cases we study the question of normal hyperbolicity of the invariant torus in the case when the torus is close to a `critical circle'. It turns out that the normal hyperbolicity takes place only in the case of $1:q$ resonance. In the sequent paper [16] we study limit cycles which appear after perturbation of the above situation.
Citation: Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443
References:
[1]

G. G. Appelrot, The problem of motion of a rigid body about a fixed point,, Uchenye Zap. Mosk. Univ. Otdel Fiz. Mat. Nauk, 11 (1894), 1.   Google Scholar

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989).   Google Scholar

[3]

A. V. Bolsinov, A. V. Borisov and I. S. Mamaev, Topology and stability of integrable systems,, Russian Math. Surveys, 65 (2010), 259.  doi: 10.1070/RM2010v065n02ABEH004672.  Google Scholar

[4]

M. Bobieński and H. Żołądek, Limit cycles for multidimensional vector fields. The elliptic case,, J. Dynam. Control Systems, 9 (2003), 265.  doi: 10.1023/A:1023241823216.  Google Scholar

[5]

M. Bobieński and H. Żołądek, A counterexample to a multidimensional version of the weakened Hilbert's 16th problem,, Moscow Math. J., 7 (2007), 1.   Google Scholar

[6]

A. V. Borisov and I. S. Mamaev, The Hess case in the dynamics of a rigid body,, J. Appl. Math. Mech., 67 (2003), 227.  doi: 10.1016/S0021-8928(03)90009-8.  Google Scholar

[7]

A. Delshamps, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flow of $ \mathbbT^{2},$, Commun. Math. Phys., 209 (2000), 353.   Google Scholar

[8]

S. A. Dovbysh, The separatrix of an unstable position of equilibrium of the Hess-Appelrot gyroscope,, Prikl. Mat. Mekh., 56 (1992), 534.  doi: 10.1016/0021-8928(92)90009-W.  Google Scholar

[9]

V. Dragović and B. Gajić, An $L-A$ pair for the Hess-Appelrot system and a new integrable case for the Euler-Poisson equations on $so(4)\times so(4)$,, Roy. Soc. Edinburgh: Proc. A, 131 (2001), 845.  doi: 10.1017/S0308210500001141.  Google Scholar

[10]

V. Dragović and B. Gajić, Systems of Hess-Appel'rot type,, Commun. Math. Phys., 265 (2006), 397.   Google Scholar

[11]

V. V. Golubev, "Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point,", State Publ. House of Theoret. Techn. Literat., (1960).   Google Scholar

[12]

W. Hess, Über die Euler'schen Bewegungsgleichungen und über eine neue particuläre Losung des Problems der Bewegung eines starren Körpers um eined festen Punkt,, Math. Annalen, 37 (1890), 178.   Google Scholar

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lectute Notes in Math., 583 (1977).   Google Scholar

[14]

G. Lamé, Sur les surfaces isothermes dans les corps homogénes en équilibre de température,, J. Math. Pures Appl., 2 (1837), 147.   Google Scholar

[15]

P. Leszczyński and H. Żołądek, Limit cycles appearing after perturbation of certain multidimensional vector fields,, J. Dynam. Differ. Equations, 13 (2001), 689.   Google Scholar

[16]

P. Lubowiecki and H. Żołądek, The Hess-Appelrot system. II. Perturbation and limit cycles,, J. Differential Equations, 252 (2012), 1701.  doi: 10.1016/j.jde.2011.06.012.  Google Scholar

[17]

A. J. Maciejewski and M. Przybylska, Differential Galois theory approach to the non-integrability of the heavy top,, Ann. Fac. Sci. Touluse, 14 (2005), 123.   Google Scholar

[18]

N. A. Nekrasov, Analytic investigation of a particular case of motion of a heavy rigid body about fixed point,, Matem. Sbornik, 18 (1895), 162.   Google Scholar

[19]

Yu. P. Varkhalev and G. V. Gorr, Asymptotically pendulum motions of the Hess-Appelrot gyroscope,, Prikl. Mat. Mekh., 48 (1984), 490.   Google Scholar

[20]

N. E. Zhukovski, Geometrische interpretation des Hess'schen falles der bewegung eines schweren starren korpers um eine festen punkt,, Jahr. Berichte Deutschen Math. Verein., 3 (1894), 62.   Google Scholar

[21]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. I,, Funct. Anal. Appl., 16 (1983), 181.   Google Scholar

[22]

H. Żołądek, "The Monodromy Group,", Birkhäuser, (2006).   Google Scholar

show all references

References:
[1]

G. G. Appelrot, The problem of motion of a rigid body about a fixed point,, Uchenye Zap. Mosk. Univ. Otdel Fiz. Mat. Nauk, 11 (1894), 1.   Google Scholar

[2]

V. I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer-Verlag, (1989).   Google Scholar

[3]

A. V. Bolsinov, A. V. Borisov and I. S. Mamaev, Topology and stability of integrable systems,, Russian Math. Surveys, 65 (2010), 259.  doi: 10.1070/RM2010v065n02ABEH004672.  Google Scholar

[4]

M. Bobieński and H. Żołądek, Limit cycles for multidimensional vector fields. The elliptic case,, J. Dynam. Control Systems, 9 (2003), 265.  doi: 10.1023/A:1023241823216.  Google Scholar

[5]

M. Bobieński and H. Żołądek, A counterexample to a multidimensional version of the weakened Hilbert's 16th problem,, Moscow Math. J., 7 (2007), 1.   Google Scholar

[6]

A. V. Borisov and I. S. Mamaev, The Hess case in the dynamics of a rigid body,, J. Appl. Math. Mech., 67 (2003), 227.  doi: 10.1016/S0021-8928(03)90009-8.  Google Scholar

[7]

A. Delshamps, R. de la Llave and T. M. Seara, A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flow of $ \mathbbT^{2},$, Commun. Math. Phys., 209 (2000), 353.   Google Scholar

[8]

S. A. Dovbysh, The separatrix of an unstable position of equilibrium of the Hess-Appelrot gyroscope,, Prikl. Mat. Mekh., 56 (1992), 534.  doi: 10.1016/0021-8928(92)90009-W.  Google Scholar

[9]

V. Dragović and B. Gajić, An $L-A$ pair for the Hess-Appelrot system and a new integrable case for the Euler-Poisson equations on $so(4)\times so(4)$,, Roy. Soc. Edinburgh: Proc. A, 131 (2001), 845.  doi: 10.1017/S0308210500001141.  Google Scholar

[10]

V. Dragović and B. Gajić, Systems of Hess-Appel'rot type,, Commun. Math. Phys., 265 (2006), 397.   Google Scholar

[11]

V. V. Golubev, "Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point,", State Publ. House of Theoret. Techn. Literat., (1960).   Google Scholar

[12]

W. Hess, Über die Euler'schen Bewegungsgleichungen und über eine neue particuläre Losung des Problems der Bewegung eines starren Körpers um eined festen Punkt,, Math. Annalen, 37 (1890), 178.   Google Scholar

[13]

M. W. Hirsch, C. C. Pugh and M. Shub, "Invariant Manifolds,", Lectute Notes in Math., 583 (1977).   Google Scholar

[14]

G. Lamé, Sur les surfaces isothermes dans les corps homogénes en équilibre de température,, J. Math. Pures Appl., 2 (1837), 147.   Google Scholar

[15]

P. Leszczyński and H. Żołądek, Limit cycles appearing after perturbation of certain multidimensional vector fields,, J. Dynam. Differ. Equations, 13 (2001), 689.   Google Scholar

[16]

P. Lubowiecki and H. Żołądek, The Hess-Appelrot system. II. Perturbation and limit cycles,, J. Differential Equations, 252 (2012), 1701.  doi: 10.1016/j.jde.2011.06.012.  Google Scholar

[17]

A. J. Maciejewski and M. Przybylska, Differential Galois theory approach to the non-integrability of the heavy top,, Ann. Fac. Sci. Touluse, 14 (2005), 123.   Google Scholar

[18]

N. A. Nekrasov, Analytic investigation of a particular case of motion of a heavy rigid body about fixed point,, Matem. Sbornik, 18 (1895), 162.   Google Scholar

[19]

Yu. P. Varkhalev and G. V. Gorr, Asymptotically pendulum motions of the Hess-Appelrot gyroscope,, Prikl. Mat. Mekh., 48 (1984), 490.   Google Scholar

[20]

N. E. Zhukovski, Geometrische interpretation des Hess'schen falles der bewegung eines schweren starren korpers um eine festen punkt,, Jahr. Berichte Deutschen Math. Verein., 3 (1894), 62.   Google Scholar

[21]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics. I,, Funct. Anal. Appl., 16 (1983), 181.   Google Scholar

[22]

H. Żołądek, "The Monodromy Group,", Birkhäuser, (2006).   Google Scholar

[1]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[2]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[8]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[11]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]