March  2012, 4(1): 49-88. doi: 10.3934/jgm.2012.4.49

Variational reduction of Lagrangian systems with general constraints

1. 

Instituto Balseiro, U.N. de Cuyo - C.N.E.A., San Carlos de Bariloche, R8402AGP, Argentina

2. 

Departamento de Matemtica, Facultad de Ciencias Exactas, U.N.L.P., La Plata, Buenos Aires, Argentina

Received  October 2011 Revised  April 2012 Published  April 2012

In this paper we present an alternative procedure for reducing, in the Lagrangian formalism, the equations of motion of first order constrained mechanical systems with symmetry. The procedure involves two principal connections: one of them is used to define the reduced degrees of freedom and the other one to decompose variations into horizontal and vertical components. On the one hand, we show that this new procedure is particularly useful when the configuration space is a trivial principal bundle over the symmetry group, which is the case of many interesting examples. On the other hand, based on that procedure, we extend in a natural way the variational reduction methods to the Lagrangian systems with higher order constraints. Examples are discussed in order to illustrate the involved theorethical constructions.
Citation: Sergio Grillo, Marcela Zuccalli. Variational reduction of Lagrangian systems with general constraints. Journal of Geometric Mechanics, 2012, 4 (1) : 49-88. doi: 10.3934/jgm.2012.4.49
References:
[1]

R. Abraham and J. E. Marsden, "Foundation of Mechanics,", Benjaming Cummings, (1985).   Google Scholar

[2]

P. Balseiro and J. Solomin, On generalized non-holonomic systems,, Letters of Mathematical Physics, 84 (2008), 15.  doi: 10.1007/s11005-008-0236-9.  Google Scholar

[3]

A. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rat. Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[4]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry,", Second edition, 120 (1986).   Google Scholar

[5]

F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems,", Texts in Applied Mathematics, 49 (2005).   Google Scholar

[6]

F. Cantrijn, M. de León, J. C. Marrero and D. Martín de Diego, Reduction of constrained systems with symmetries,, J. Math. Phys., 40 (1999), 795.  doi: 10.1063/1.532686.  Google Scholar

[7]

H. Cendra, S. Ferraro and S. Grillo, Lagrangian reduction of generalized nonholonomic systems,, Journal of Geometry and Physics, 58 (2008), 1271.   Google Scholar

[8]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006).   Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007).   Google Scholar

[10]

H. Cendra, A. Ibort, M. de León and D. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.  doi: 10.1063/1.1763245.  Google Scholar

[11]

H. Cendra, E. A. Lacomba and W. A. Reartes, The Lagrange D'Alembert-Poincaré equations for the symmetric rolling sphere,, Actas del VI Congreso Antonio Monteiro, (2002), 19.   Google Scholar

[12]

H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Moscow Mathematical Journal, 3 (2003), 833.   Google Scholar

[13]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Memoirs of the American Mathematical Society, 152 (2001).   Google Scholar

[14]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and non-holonomic systems,, in, (2001), 221.   Google Scholar

[15]

N. G. Chetaev, On Gauss principle,, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68.   Google Scholar

[16]

M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Camb. Phil. Soc., 99 (1986), 565.  doi: 10.1017/S0305004100064501.  Google Scholar

[17]

M. de León and P. R. Rodrigues, "Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives,", North-Holland Mathematics Studies, 112 (1985).   Google Scholar

[18]

J. Fernandez, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69.  doi: 10.3934/jgm.2010.2.69.  Google Scholar

[19]

C. Godbillon, "Géométrie Différentielle et Mécanique Analytique,", Hermann, (1969).   Google Scholar

[20]

J. H. Greidanus, "Besturing en Stabiliteit van het Neuswielonderstel,", Rapport V 1038, (1038).   Google Scholar

[21]

S. Grillo, "Sistemas Noholónomos Generalizados,", (Spanish), (2007).   Google Scholar

[22]

S. Grillo, Higher order constrained Hamiltonian systems,, J. Math. Phys., 50 (2009).   Google Scholar

[23]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, International Journal of Geometric Methods in Modern Physics, 7 (2010), 1.  doi: 10.1142/S0219887810004580.  Google Scholar

[24]

S. Grillo, J. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization,, Journal of Geometric Mechanics, 3 (2011), 145.  doi: 10.3934/jgm.2011.3.145.  Google Scholar

[25]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", New York, (1963).   Google Scholar

[26]

O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.  doi: 10.1063/1.533411.  Google Scholar

[27]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353.   Google Scholar

[28]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", Texts in Applied Mathematics, 17 (1994).   Google Scholar

[29]

J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications,", New York, (2001).   Google Scholar

[30]

D. Pérez, "Sistemas Dinámicos no Holónomos Generalizados y su Aplicación a la Teoría de Control Automático Mediante Vínculos Cinemáticos,", (Spanish), (2006).   Google Scholar

[31]

D. Pérez, "Sistemas Mecánicos con Vínculos de Orden Superior: Aplicaciones a la Teoría de Control,", (Spanish), (2007).   Google Scholar

[32]

Y. Pironneau, Sur les liaisons non holonomes non linéaires déplacement virtuels à travail nul, conditions de Chetaev,, in, 117 (1983), 671.   Google Scholar

[33]

J. W. S. Rayleigh, "The Theory of Sound,", Dover Publications, (1945).   Google Scholar

[34]

Do Shan, Equations of motion of systems with second-order nonlinear non-holonomic constraints,, Prikl. Mat. Mekh., 37 (1973), 349.   Google Scholar

[35]

W. M. Tulczyjew and P. Urbanski, A slow and careful Legendre transformation for singular Lagrangians,, Acta Physica Polonica B, 30 (1999), 2909.   Google Scholar

[36]

V. Vâlcovici, Une extension des liaisons non holonomes et des principes variationnels,, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl., 102 (1958).   Google Scholar

[37]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1937).   Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundation of Mechanics,", Benjaming Cummings, (1985).   Google Scholar

[2]

P. Balseiro and J. Solomin, On generalized non-holonomic systems,, Letters of Mathematical Physics, 84 (2008), 15.  doi: 10.1007/s11005-008-0236-9.  Google Scholar

[3]

A. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Arch. Rat. Mech. Anal., 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[4]

W. M. Boothby, "An Introduction to Differentiable Manifolds and Riemannian Geometry,", Second edition, 120 (1986).   Google Scholar

[5]

F. Bullo and A. Lewis, "Geometric Control of Mechanical Systems. Modeling, Analysis, and Design for Simple Mechanical Control Systems,", Texts in Applied Mathematics, 49 (2005).   Google Scholar

[6]

F. Cantrijn, M. de León, J. C. Marrero and D. Martín de Diego, Reduction of constrained systems with symmetries,, J. Math. Phys., 40 (1999), 795.  doi: 10.1063/1.532686.  Google Scholar

[7]

H. Cendra, S. Ferraro and S. Grillo, Lagrangian reduction of generalized nonholonomic systems,, Journal of Geometry and Physics, 58 (2008), 1271.   Google Scholar

[8]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006).   Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007).   Google Scholar

[10]

H. Cendra, A. Ibort, M. de León and D. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.  doi: 10.1063/1.1763245.  Google Scholar

[11]

H. Cendra, E. A. Lacomba and W. A. Reartes, The Lagrange D'Alembert-Poincaré equations for the symmetric rolling sphere,, Actas del VI Congreso Antonio Monteiro, (2002), 19.   Google Scholar

[12]

H. Cendra, J. E. Marsden, S. Pekarsky and T. S. Ratiu, Variational principles for Lie-Poisson and Hamilton-Poincaré equations,, Moscow Mathematical Journal, 3 (2003), 833.   Google Scholar

[13]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Memoirs of the American Mathematical Society, 152 (2001).   Google Scholar

[14]

H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and non-holonomic systems,, in, (2001), 221.   Google Scholar

[15]

N. G. Chetaev, On Gauss principle,, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68.   Google Scholar

[16]

M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Camb. Phil. Soc., 99 (1986), 565.  doi: 10.1017/S0305004100064501.  Google Scholar

[17]

M. de León and P. R. Rodrigues, "Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives,", North-Holland Mathematics Studies, 112 (1985).   Google Scholar

[18]

J. Fernandez, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69.  doi: 10.3934/jgm.2010.2.69.  Google Scholar

[19]

C. Godbillon, "Géométrie Différentielle et Mécanique Analytique,", Hermann, (1969).   Google Scholar

[20]

J. H. Greidanus, "Besturing en Stabiliteit van het Neuswielonderstel,", Rapport V 1038, (1038).   Google Scholar

[21]

S. Grillo, "Sistemas Noholónomos Generalizados,", (Spanish), (2007).   Google Scholar

[22]

S. Grillo, Higher order constrained Hamiltonian systems,, J. Math. Phys., 50 (2009).   Google Scholar

[23]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, International Journal of Geometric Methods in Modern Physics, 7 (2010), 1.  doi: 10.1142/S0219887810004580.  Google Scholar

[24]

S. Grillo, J. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization,, Journal of Geometric Mechanics, 3 (2011), 145.  doi: 10.3934/jgm.2011.3.145.  Google Scholar

[25]

S. Kobayashi and K. Nomizu, "Foundations of Differential Geometry,", New York, (1963).   Google Scholar

[26]

O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.  doi: 10.1063/1.533411.  Google Scholar

[27]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353.   Google Scholar

[28]

J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,", Texts in Applied Mathematics, 17 (1994).   Google Scholar

[29]

J. E. Marsden and T. S. Ratiu, "Manifolds, Tensor Analysis and Applications,", New York, (2001).   Google Scholar

[30]

D. Pérez, "Sistemas Dinámicos no Holónomos Generalizados y su Aplicación a la Teoría de Control Automático Mediante Vínculos Cinemáticos,", (Spanish), (2006).   Google Scholar

[31]

D. Pérez, "Sistemas Mecánicos con Vínculos de Orden Superior: Aplicaciones a la Teoría de Control,", (Spanish), (2007).   Google Scholar

[32]

Y. Pironneau, Sur les liaisons non holonomes non linéaires déplacement virtuels à travail nul, conditions de Chetaev,, in, 117 (1983), 671.   Google Scholar

[33]

J. W. S. Rayleigh, "The Theory of Sound,", Dover Publications, (1945).   Google Scholar

[34]

Do Shan, Equations of motion of systems with second-order nonlinear non-holonomic constraints,, Prikl. Mat. Mekh., 37 (1973), 349.   Google Scholar

[35]

W. M. Tulczyjew and P. Urbanski, A slow and careful Legendre transformation for singular Lagrangians,, Acta Physica Polonica B, 30 (1999), 2909.   Google Scholar

[36]

V. Vâlcovici, Une extension des liaisons non holonomes et des principes variationnels,, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl., 102 (1958).   Google Scholar

[37]

E. T. Whittaker, "A Treatise on the Analytical Dynamics of Particles and Rigid Bodies,", Cambridge University Press, (1937).   Google Scholar

[1]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[2]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[3]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[4]

Javier Fernández, Marcela Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 433-444. doi: 10.3934/jgm.2013.5.433

[5]

Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399

[6]

Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431

[7]

Jorge Cortés, Manuel de León, Juan Carlos Marrero, Eduardo Martínez. Nonholonomic Lagrangian systems on Lie algebroids. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 213-271. doi: 10.3934/dcds.2009.24.213

[8]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez, Patrícia Santos. On the virial theorem for nonholonomic Lagrangian systems. Conference Publications, 2015, 2015 (special) : 204-212. doi: 10.3934/proc.2015.0204

[9]

Anouar Bahrouni, Marek Izydorek, Joanna Janczewska. Subharmonic solutions for a class of Lagrangian systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1841-1850. doi: 10.3934/dcdss.2019121

[10]

Mike Crampin, Tom Mestdag. Reduction of invariant constrained systems using anholonomic frames. Journal of Geometric Mechanics, 2011, 3 (1) : 23-40. doi: 10.3934/jgm.2011.3.23

[11]

Francesca Alessio, Vittorio Coti Zelati, Piero Montecchiari. Chaotic behavior of rapidly oscillating Lagrangian systems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 687-707. doi: 10.3934/dcds.2004.10.687

[12]

Alberto Bressan. Impulsive control of Lagrangian systems and locomotion in fluids. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 1-35. doi: 10.3934/dcds.2008.20.1

[13]

Shengji Li, Chunmei Liao, Minghua Li. Stability analysis of parametric variational systems. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 317-331. doi: 10.3934/naco.2011.1.317

[14]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[15]

Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 74-79. doi: 10.3934/proc.2001.2001.74

[16]

Xi-Hong Yan. A new convergence proof of augmented Lagrangian-based method with full Jacobian decomposition for structured variational inequalities. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 45-54. doi: 10.3934/naco.2016.6.45

[17]

Yuri B. Suris. Variational formulation of commuting Hamiltonian flows: Multi-time Lagrangian 1-forms. Journal of Geometric Mechanics, 2013, 5 (3) : 365-379. doi: 10.3934/jgm.2013.5.365

[18]

Kaizhi Wang, Yong Li. Existence and monotonicity property of minimizers of a nonconvex variational problem with a second-order Lagrangian. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 687-699. doi: 10.3934/dcds.2009.25.687

[19]

Anis Theljani, Ke Chen. An augmented lagrangian method for solving a new variational model based on gradients similarity measures and high order regulariation for multimodality registration. Inverse Problems & Imaging, 2019, 13 (2) : 309-335. doi: 10.3934/ipi.2019016

[20]

Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]