March  2012, 4(1): 89-97. doi: 10.3934/jgm.2012.4.89

Stable closed equilibria for anisotropic surface energies: Surfaces with edges

1. 

Department of Mathematics, Idaho State University, Pocatello , Idaho, 83209, United States

Received  November 2011 Revised  April 2012 Published  April 2012

We study the stability of closed, not necessarily smooth, equilibrium surfaces of an anisotropic surface energy for which the Wulff shape is not necessarily smooth. We show that if the Cahn-Hoffman field can be extended continuously to the whole surface and if the surface is stable, then the surface is, up to rescaling, the Wulff shape.
Citation: Bennett Palmer. Stable closed equilibria for anisotropic surface energies: Surfaces with edges. Journal of Geometric Mechanics, 2012, 4 (1) : 89-97. doi: 10.3934/jgm.2012.4.89
References:
[1]

J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature,, Math. Z., 185 (1984), 339.  doi: 10.1007/BF01215045.  Google Scholar

[2]

J. E. Brothers and F. Morgan, The isoperimetric theorem for general integrands,, Michigan Math. J., 41 (1994), 419.  doi: 10.1307/mmj/1029005070.  Google Scholar

[3]

J. W. Cahn and D. W. Hoffman, A vector thermodynamics for anisotropic surfaces. II. Curved and faceted surfaces,, Acta Metallurgica, 22 (1974), 1205.  doi: 10.1016/0001-6160(74)90134-5.  Google Scholar

[4]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Monographs in Mathematics, 99 (2006).   Google Scholar

[5]

Y. He, H. Li, H. Ma and J. Ge, Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures,, Indiana Univ. Math. J., 58 (2009), 853.  doi: 10.1512/iumj.2009.58.3515.  Google Scholar

[6]

Y. He and H. Li, A new variational characterization of the Wulff shape,, Differential Geom. Appl., 26 (2008), 377.   Google Scholar

[7]

Y. He and H. Li, Stability of hypersurfaces with constant (r+1)-th anisotropic mean curvature,, Illinois J. Math., 52 (2008), 1301.   Google Scholar

[8]

M. Koiso and B. Palmer, Geometry and stability of surfaces with constant anisotropic mean curvature,, Indiana Univ. Math. J., 54 (2005), 1817.  doi: 10.1512/iumj.2005.54.2613.  Google Scholar

[9]

M. Koiso and B. Palmer, Stability of anisotropic capillary surfaces between two parallel planes,, Calculus of Variations and Partial Differential Equations, 25 (2006), 275.   Google Scholar

[10]

M. Koiso and B. Palmer, Rolling construction for anisotropic Delaunay surfaces,, Pacific J. Math., 234 (2008), 345.   Google Scholar

[11]

M. Koiso and B. Palmer, Anisotropic umbilic points and Hopf's theorem for constant anisotropic mean curvature,, Indiana Univ. Math. J., 59 (2010), 79.  doi: 10.1512/iumj.2010.59.4164.  Google Scholar

[12]

F. Morgan, Planar Wulff shape is unique equilibrium,, Proc. Amer. Math. Soc., 133 (2005), 809.  doi: 10.1090/S0002-9939-04-07661-0.  Google Scholar

[13]

B. Palmer, Stability of the Wulff shape,, Proc. Amer. Math. Soc., 126 (1998), 3661.  doi: 10.1090/S0002-9939-98-04641-3.  Google Scholar

[14]

H. C. Wente, A note on the stability theorem of J. L. Barbosa and M. Do Carmo for closed surfaces of constant mean curvature,, Pacific J. Math., 147 (1991), 375.   Google Scholar

[15]

S. Winklmann, A note on the stability of the Wulff shape,, Arch. Math. (Basel), 87 (2006), 272.  doi: 10.1007/s00013-006-1685-y.  Google Scholar

show all references

References:
[1]

J. L. Barbosa and M. do Carmo, Stability of hypersurfaces with constant mean curvature,, Math. Z., 185 (1984), 339.  doi: 10.1007/BF01215045.  Google Scholar

[2]

J. E. Brothers and F. Morgan, The isoperimetric theorem for general integrands,, Michigan Math. J., 41 (1994), 419.  doi: 10.1307/mmj/1029005070.  Google Scholar

[3]

J. W. Cahn and D. W. Hoffman, A vector thermodynamics for anisotropic surfaces. II. Curved and faceted surfaces,, Acta Metallurgica, 22 (1974), 1205.  doi: 10.1016/0001-6160(74)90134-5.  Google Scholar

[4]

Y. Giga, "Surface Evolution Equations. A Level Set Approach,", Monographs in Mathematics, 99 (2006).   Google Scholar

[5]

Y. He, H. Li, H. Ma and J. Ge, Compact embedded hypersurfaces with constant higher order anisotropic mean curvatures,, Indiana Univ. Math. J., 58 (2009), 853.  doi: 10.1512/iumj.2009.58.3515.  Google Scholar

[6]

Y. He and H. Li, A new variational characterization of the Wulff shape,, Differential Geom. Appl., 26 (2008), 377.   Google Scholar

[7]

Y. He and H. Li, Stability of hypersurfaces with constant (r+1)-th anisotropic mean curvature,, Illinois J. Math., 52 (2008), 1301.   Google Scholar

[8]

M. Koiso and B. Palmer, Geometry and stability of surfaces with constant anisotropic mean curvature,, Indiana Univ. Math. J., 54 (2005), 1817.  doi: 10.1512/iumj.2005.54.2613.  Google Scholar

[9]

M. Koiso and B. Palmer, Stability of anisotropic capillary surfaces between two parallel planes,, Calculus of Variations and Partial Differential Equations, 25 (2006), 275.   Google Scholar

[10]

M. Koiso and B. Palmer, Rolling construction for anisotropic Delaunay surfaces,, Pacific J. Math., 234 (2008), 345.   Google Scholar

[11]

M. Koiso and B. Palmer, Anisotropic umbilic points and Hopf's theorem for constant anisotropic mean curvature,, Indiana Univ. Math. J., 59 (2010), 79.  doi: 10.1512/iumj.2010.59.4164.  Google Scholar

[12]

F. Morgan, Planar Wulff shape is unique equilibrium,, Proc. Amer. Math. Soc., 133 (2005), 809.  doi: 10.1090/S0002-9939-04-07661-0.  Google Scholar

[13]

B. Palmer, Stability of the Wulff shape,, Proc. Amer. Math. Soc., 126 (1998), 3661.  doi: 10.1090/S0002-9939-98-04641-3.  Google Scholar

[14]

H. C. Wente, A note on the stability theorem of J. L. Barbosa and M. Do Carmo for closed surfaces of constant mean curvature,, Pacific J. Math., 147 (1991), 375.   Google Scholar

[15]

S. Winklmann, A note on the stability of the Wulff shape,, Arch. Math. (Basel), 87 (2006), 272.  doi: 10.1007/s00013-006-1685-y.  Google Scholar

[1]

Matteo Cozzi. On the variation of the fractional mean curvature under the effect of $C^{1, \alpha}$ perturbations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5769-5786. doi: 10.3934/dcds.2015.35.5769

[2]

Matthias Bergner, Lars Schäfer. Time-like surfaces of prescribed anisotropic mean curvature in Minkowski space. Conference Publications, 2011, 2011 (Special) : 155-162. doi: 10.3934/proc.2011.2011.155

[3]

Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297

[4]

Chiara Corsato, Colette De Coster, Franco Obersnel, Pierpaolo Omari, Alessandro Soranzo. A prescribed anisotropic mean curvature equation modeling the corneal shape: A paradigm of nonlinear analysis. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 213-256. doi: 10.3934/dcdss.2018013

[5]

Oleksandr Misiats, Nung Kwan Yip. Convergence of space-time discrete threshold dynamics to anisotropic motion by mean curvature. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6379-6411. doi: 10.3934/dcds.2016076

[6]

Weimin Sheng, Caihong Yi. A class of anisotropic expanding curvature flows. Discrete & Continuous Dynamical Systems - A, 2020, 40 (4) : 2017-2035. doi: 10.3934/dcds.2020104

[7]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems & Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

[8]

G. Kamberov. Prescribing mean curvature: existence and uniqueness problems. Electronic Research Announcements, 1998, 4: 4-11.

[9]

Giulio Colombo, Luciano Mari, Marco Rigoli. Remarks on mean curvature flow solitons in warped products. Discrete & Continuous Dynamical Systems - S, 2020, 13 (7) : 1957-1991. doi: 10.3934/dcdss.2020153

[10]

Changfeng Gui, Huaiyu Jian, Hongjie Ju. Properties of translating solutions to mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 441-453. doi: 10.3934/dcds.2010.28.441

[11]

Georgi I. Kamberov. Recovering the shape of a surface from the mean curvature. Conference Publications, 1998, 1998 (Special) : 353-359. doi: 10.3934/proc.1998.1998.353

[12]

Tobias H. Colding and Bruce Kleiner. Singularity structure in mean curvature flow of mean-convex sets. Electronic Research Announcements, 2003, 9: 121-124.

[13]

Fausto Ferrari. Mean value properties of fractional second order operators. Communications on Pure & Applied Analysis, 2015, 14 (1) : 83-106. doi: 10.3934/cpaa.2015.14.83

[14]

Naoufel Ben Abdallah, Yongyong Cai, Francois Castella, Florian Méhats. Second order averaging for the nonlinear Schrödinger equation with strongly anisotropic potential. Kinetic & Related Models, 2011, 4 (4) : 831-856. doi: 10.3934/krm.2011.4.831

[15]

Nils Dabrock, Yves van Gennip. A note on "Anisotropic total variation regularized $L^1$-approximation and denoising/deblurring of 2D bar codes". Inverse Problems & Imaging, 2018, 12 (2) : 525-526. doi: 10.3934/ipi.2018022

[16]

Rustum Choksi, Yves van Gennip, Adam Oberman. Anisotropic total variation regularized $L^1$ approximation and denoising/deblurring of 2D bar codes. Inverse Problems & Imaging, 2011, 5 (3) : 591-617. doi: 10.3934/ipi.2011.5.591

[17]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[18]

Daehwan Kim, Juncheol Pyo. Existence and asymptotic behavior of helicoidal translating solitons of the mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5897-5919. doi: 10.3934/dcds.2018256

[19]

Kin Ming Hui. Existence of self-similar solutions of the inverse mean curvature flow. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 863-880. doi: 10.3934/dcds.2019036

[20]

Jinju Xu. A new proof of gradient estimates for mean curvature equations with oblique boundary conditions. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1719-1742. doi: 10.3934/cpaa.2016010

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (40)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]