- Previous Article
- JGM Home
- This Issue
-
Next Article
Stable closed equilibria for anisotropic surface energies: Surfaces with edges
Lagrangian dynamics of submanifolds. Relativistic mechanics
1. | Department of Theoretical Physics, Moscow State University, Moscow, Russian Federation |
References:
[1] |
A. Echeverría Enríquez, M. Muñoz Lecanda and N. Román Roy, Geometrical setting of time-dependent regular systems. Alternative models,, Reviews in Mathematical Physica, 3 (1991), 301.
doi: 10.1142/S0129055X91000114. |
[2] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,", World Scientific Publishing Co., (1997).
|
[3] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, On the notion of gauge symmetries of generic Lagrangian field theory,, Journal of Mathematical Physics, 50 (2009).
|
[4] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "Advanced Classical Field Theory,", World Scientific Publishing Co. Pte. Ltd., (2009).
|
[5] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "Geometric Formulation of Classical and Quantum Mechanics,", World Scientific Publishing Co. Pte. Ltd., (2010).
|
[6] |
I. Krasil'shchik, V. Lychagin and A. Vinogradov, "Geometry of Jet Spaces and Nonlinear Partial Differential Equations,", Gordon and Breach, (1985). Google Scholar |
[7] |
M. De León and P. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics,", North-Holland, (1989). Google Scholar |
[8] |
L. Mangiarotti and G. Sardanashvily, "Gauge Mechanics,", World Scientific Publishing Co., (1998).
|
[9] |
M. Modugno and A. Vinogradov, Some variations on the notion of connections,, Annali di Matematica Pura ed Applicata, CLXVII (1994), 33.
doi: 10.1007/BF01760328. |
[10] |
J. Polchinski, "String Theory,", Cambridge University Press, (1998). Google Scholar |
[11] |
G. Sardanashvily, Hamiltonian time-dependent mechanics,, Journal of Mathematical Physics, 39 (1998), 2714.
doi: 10.1063/1.532416. |
[12] |
G. Sardanashvily, Relativistic mechanics in a general setting,, International Journal of Geometric Methods in Modern Physics, 7 (2010), 1307.
doi: 10.1142/S0219887810004804. |
show all references
References:
[1] |
A. Echeverría Enríquez, M. Muñoz Lecanda and N. Román Roy, Geometrical setting of time-dependent regular systems. Alternative models,, Reviews in Mathematical Physica, 3 (1991), 301.
doi: 10.1142/S0129055X91000114. |
[2] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "New Lagrangian and Hamiltonian Methods in Field Theory,", World Scientific Publishing Co., (1997).
|
[3] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, On the notion of gauge symmetries of generic Lagrangian field theory,, Journal of Mathematical Physics, 50 (2009).
|
[4] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "Advanced Classical Field Theory,", World Scientific Publishing Co. Pte. Ltd., (2009).
|
[5] |
G. Giachetta, L. Mangiarotti and G. Sardanashvily, "Geometric Formulation of Classical and Quantum Mechanics,", World Scientific Publishing Co. Pte. Ltd., (2010).
|
[6] |
I. Krasil'shchik, V. Lychagin and A. Vinogradov, "Geometry of Jet Spaces and Nonlinear Partial Differential Equations,", Gordon and Breach, (1985). Google Scholar |
[7] |
M. De León and P. Rodrigues, "Methods of Differential Geometry in Analytical Mechanics,", North-Holland, (1989). Google Scholar |
[8] |
L. Mangiarotti and G. Sardanashvily, "Gauge Mechanics,", World Scientific Publishing Co., (1998).
|
[9] |
M. Modugno and A. Vinogradov, Some variations on the notion of connections,, Annali di Matematica Pura ed Applicata, CLXVII (1994), 33.
doi: 10.1007/BF01760328. |
[10] |
J. Polchinski, "String Theory,", Cambridge University Press, (1998). Google Scholar |
[11] |
G. Sardanashvily, Hamiltonian time-dependent mechanics,, Journal of Mathematical Physics, 39 (1998), 2714.
doi: 10.1063/1.532416. |
[12] |
G. Sardanashvily, Relativistic mechanics in a general setting,, International Journal of Geometric Methods in Modern Physics, 7 (2010), 1307.
doi: 10.1142/S0219887810004804. |
[1] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[2] |
Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic & Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345 |
[3] |
Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67 |
[4] |
Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367 |
[5] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic & Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[6] |
Rémi Leclercq. Spectral invariants in Lagrangian Floer theory. Journal of Modern Dynamics, 2008, 2 (2) : 249-286. doi: 10.3934/jmd.2008.2.249 |
[7] |
Eduard Feireisl, Šárka Nečasová, Reimund Rautmann, Werner Varnhorn. New developments in mathematical theory of fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : i-ii. doi: 10.3934/dcdss.2014.7.5i |
[8] |
Benjamin Seibold, Rodolfo R. Rosales, Jean-Christophe Nave. Jet schemes for advection problems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1229-1259. doi: 10.3934/dcdsb.2012.17.1229 |
[9] |
Katarzyna Grabowska. Lagrangian and Hamiltonian formalism in Field Theory: A simple model. Journal of Geometric Mechanics, 2010, 2 (4) : 375-395. doi: 10.3934/jgm.2010.2.375 |
[10] |
Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317 |
[11] |
Weinan E, Jianfeng Lu. Mathematical theory of solids: From quantum mechanics to continuum models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5085-5097. doi: 10.3934/dcds.2014.34.5085 |
[12] |
Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595 |
[13] |
Stefano Marò. Relativistic pendulum and invariant curves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139 |
[14] |
Dawan Mustafa, Bernt Wennberg. Chaotic distributions for relativistic particles. Kinetic & Related Models, 2016, 9 (4) : 749-766. doi: 10.3934/krm.2016014 |
[15] |
Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267 |
[16] |
Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019 |
[17] |
Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807 |
[18] |
Vieri Benci. Solitons and Bohmian mechanics. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 303-317. doi: 10.3934/dcds.2002.8.303 |
[19] |
Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527 |
[20] |
Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191-197. doi: 10.3934/proc.2009.2009.191 |
2018 Impact Factor: 0.525
Tools
Metrics
Other articles
by authors
[Back to Top]