March  2013, 5(1): 131-150. doi: 10.3934/jgm.2013.5.131

Computing metamorphoses between discrete measures

1. 

Center for Imaging Science, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, United States

2. 

Center for Imaging Science and Department of Applied Mathematics and Statistics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, United States

Received  August 2012 Revised  January 2013 Published  April 2013

Metamorphosis is a mathematical framework for diffeomorphic pattern matching in which one defines a distance on a space of images or shapes. In the case of image matching, this distance involves computing the energetically optimal way in which one image can be morphed into the other, combining both smooth deformations and changes in the image intensity. In [12], Holm, Trouvé and Younes studied the metamorphosis of more singular deformable objects, in particular measures. In this paper, we present results on the analysis and computation of discrete measure metamorphosis, building upon the work in [12]. We show that, when matching sums of Dirac measures, minimizing evolutions can include other singular distributions, which complicates the numerical approximation of such solutions. We then present an Eulerian numerical scheme that accounts for these distributions, as well as some numerical experiments using this scheme.
Citation: Casey L. Richardson, Laurent Younes. Computing metamorphoses between discrete measures. Journal of Geometric Mechanics, 2013, 5 (1) : 131-150. doi: 10.3934/jgm.2013.5.131
References:
[1]

Vladimir I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer, (1989). Google Scholar

[2]

M. Faisal Beg, Michael I. Miller, Alain Trouvé and Laurent Younes, Computing large deformation metric mappings via geodesic flows of diffeomorphisms,, Int. J. Comp. Vis., 61 (2005), 139. doi: 10.1023/B:VISI.0000043755.93987.aa. Google Scholar

[3]

Martins Bruveris, Francois Gay-Balmaz and Darryl D. Holm, The momentum map representation of images,, J. Nonlinear Sci., 21 (2011), 115. doi: 10.1007/s00332-010-9079-5. Google Scholar

[4]

Alberto P. Calderón and Antoni Zygmund, On the existence of certain singular integrals,, Acta Math., 88 (1952), 85. Google Scholar

[5]

Paul Dupuis, Ulf Grenander and Michael Miller, Variational problems on flows of diffeomorphisms for image matching,, Quarterly of Applied Math, 56 (1998), 587. Google Scholar

[6]

Lawrence C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998). Google Scholar

[7]

Laurent Garcin and Laurent Younes, Geodesic image matching: A wavelet based energy minimization scheme,, EMM-CVPR'05, (2005), 349. doi: 10.1007/11585978_23. Google Scholar

[8]

Laurent Garcin and Laurent Younes, Geodesic matching with free extremities,, J. Math. Imag. Vis., 25 (2006), 329. doi: 10.1007/s10851-006-6729-1. Google Scholar

[9]

Joan Glaunès, Alain Trouvé and Laurent Younes, Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching,, Proceedings of CVPR '04, (2004). Google Scholar

[10]

A. Henderson, "ParaView Guide, A Parallel Visualization Application,", Kitware, (2007). Google Scholar

[11]

Darryl D. Holm, Tanya Schmah and Cristina Stoica, "Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions,", Oxford University Press, (2009). Google Scholar

[12]

Darryl D. Holm, Alain Trouvé and Laurent Younes, The Euler-Poincare theory of metamorphosis,, Quart. Appl. Math., 67 (2009), 661. Google Scholar

[13]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators I-IV,", Classics in Mathematics. Springer-Verlag, (1984). doi: 10.1007/978-3-642-96750-4. Google Scholar

[14]

Eric Jones, Travis Oliphant, Pearu Peterson, et al., "SciPy: Open Source Scientific Tools for Python,", 2001., (). Google Scholar

[15]

Sarang Joshi and Michael I. Miller, Landmark matching via large deformation diffeomorphisms,, IEEE Transactions in Image Processing, 9 (2000), 1357. doi: 10.1109/83.855431. Google Scholar

[16]

Tsoy-Wo Ma, Higher chain formula proved by combinatorics,, The Electronic Journal of Combinatorics, 16 (2009). Google Scholar

[17]

Richard Melrose, "Introduction to Microlocal Analysis,", Unpublished book, (2007). Google Scholar

[18]

Yves Meyer, "Wavelets and Operators,", Cambridge University Press, (1992). Google Scholar

[19]

Yves Meyer and Ronald Coifman, "Wavelets: Calderón-Zygmund and Multilinear Operators,", Cambridge University Press, (1997). Google Scholar

[20]

Michael I. Miller and Laurent Younes, Group action, diffeomorphism and matching: A general framework,, Int. J. Comp. Vis., 41 (2001), 61. Google Scholar

[21]

John G. Proakis, "Digital Communications,", McGraw-Hill, (1995). Google Scholar

[22]

Yu. Safarov, Distributions, Fourier transforms and microlocal analysis,, Working Paper, (1996). Google Scholar

[23]

Elias M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton University Press, (1970). Google Scholar

[24]

Elias M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton University Press, (1993). Google Scholar

[25]

Michael E. Taylor, "Pseudodifferential Operators and Nonlinear PDE,", Birkhauser, (1991). doi: 10.1007/978-1-4612-0431-2. Google Scholar

[26]

Alain Trouvé and Laurent Younes, Local geometry of deformable templates,, SIAM Journal on Mathematical Analysis, 37 (2005), 17. doi: 10.1137/S0036141002404838. Google Scholar

[27]

Alain Trouvé and Laurent Younes, Metamorphoses through lie group action,, Found. Comp. Math., (2005), 173. doi: 10.1007/s10208-004-0128-z. Google Scholar

[28]

Marc Vaillant and Joan Glaunès, Surface matching via currents,, Proceedings of Information Processing in Medical Imaging (IPMI 2005), 3565 (2005). doi: 10.1007/11505730_32. Google Scholar

[29]

Marc Vaillant, Michael I. Miller, Alain Trouv'e and Laurent Younes, Statistics on diffeomorphisms via tangent space representations,, Neuroimage, 23 (2004). doi: 10.1016/j.neuroimage.2004.07.023. Google Scholar

[30]

Lei Wang, Faisal Beg, Tilak Ratnanather, Can Ceritoglu, Laurent Younes, John C. Morris, John G. Csernansky and Michael I. Miller, Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type,, IEEE Transactions on Medical Imaging, 26 (2007), 462. doi: 10.1109/TMI.2006.887380. Google Scholar

[31]

Lei Wang, Jeffrey S. Swank, Irena E. Glick, Mokhtar H. Gado, Michael I. Miller, John C. Morris and John G. Csernansky, Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type,, NeuroImage, 20 (2003), 667. doi: 10.1109/TMI.2006.887380. Google Scholar

[32]

Laurent Younes, Computable elastic distances between shapes,, SIAM J. Appl. Math, 58 (1998), 565. doi: 10.1137/S0036139995287685. Google Scholar

[33]

Laurent Younes, "Shapes and Diffeomorphisms,", 171 of Applied Mathematical Sciences, 171 (2010). doi: 10.1007/978-3-642-12055-8. Google Scholar

[34]

Eberhard Zeidler, "Applied Functional Analysis: Applications to Mathematical Physics,", Applied Mathematical Sciences. Springer, (1995). Google Scholar

show all references

References:
[1]

Vladimir I. Arnold, "Mathematical Methods of Classical Mechanics,", Springer, (1989). Google Scholar

[2]

M. Faisal Beg, Michael I. Miller, Alain Trouvé and Laurent Younes, Computing large deformation metric mappings via geodesic flows of diffeomorphisms,, Int. J. Comp. Vis., 61 (2005), 139. doi: 10.1023/B:VISI.0000043755.93987.aa. Google Scholar

[3]

Martins Bruveris, Francois Gay-Balmaz and Darryl D. Holm, The momentum map representation of images,, J. Nonlinear Sci., 21 (2011), 115. doi: 10.1007/s00332-010-9079-5. Google Scholar

[4]

Alberto P. Calderón and Antoni Zygmund, On the existence of certain singular integrals,, Acta Math., 88 (1952), 85. Google Scholar

[5]

Paul Dupuis, Ulf Grenander and Michael Miller, Variational problems on flows of diffeomorphisms for image matching,, Quarterly of Applied Math, 56 (1998), 587. Google Scholar

[6]

Lawrence C. Evans, "Partial Differential Equations,", American Mathematical Society, (1998). Google Scholar

[7]

Laurent Garcin and Laurent Younes, Geodesic image matching: A wavelet based energy minimization scheme,, EMM-CVPR'05, (2005), 349. doi: 10.1007/11585978_23. Google Scholar

[8]

Laurent Garcin and Laurent Younes, Geodesic matching with free extremities,, J. Math. Imag. Vis., 25 (2006), 329. doi: 10.1007/s10851-006-6729-1. Google Scholar

[9]

Joan Glaunès, Alain Trouvé and Laurent Younes, Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching,, Proceedings of CVPR '04, (2004). Google Scholar

[10]

A. Henderson, "ParaView Guide, A Parallel Visualization Application,", Kitware, (2007). Google Scholar

[11]

Darryl D. Holm, Tanya Schmah and Cristina Stoica, "Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions,", Oxford University Press, (2009). Google Scholar

[12]

Darryl D. Holm, Alain Trouvé and Laurent Younes, The Euler-Poincare theory of metamorphosis,, Quart. Appl. Math., 67 (2009), 661. Google Scholar

[13]

Lars Hörmander, "The Analysis of Linear Partial Differential Operators I-IV,", Classics in Mathematics. Springer-Verlag, (1984). doi: 10.1007/978-3-642-96750-4. Google Scholar

[14]

Eric Jones, Travis Oliphant, Pearu Peterson, et al., "SciPy: Open Source Scientific Tools for Python,", 2001., (). Google Scholar

[15]

Sarang Joshi and Michael I. Miller, Landmark matching via large deformation diffeomorphisms,, IEEE Transactions in Image Processing, 9 (2000), 1357. doi: 10.1109/83.855431. Google Scholar

[16]

Tsoy-Wo Ma, Higher chain formula proved by combinatorics,, The Electronic Journal of Combinatorics, 16 (2009). Google Scholar

[17]

Richard Melrose, "Introduction to Microlocal Analysis,", Unpublished book, (2007). Google Scholar

[18]

Yves Meyer, "Wavelets and Operators,", Cambridge University Press, (1992). Google Scholar

[19]

Yves Meyer and Ronald Coifman, "Wavelets: Calderón-Zygmund and Multilinear Operators,", Cambridge University Press, (1997). Google Scholar

[20]

Michael I. Miller and Laurent Younes, Group action, diffeomorphism and matching: A general framework,, Int. J. Comp. Vis., 41 (2001), 61. Google Scholar

[21]

John G. Proakis, "Digital Communications,", McGraw-Hill, (1995). Google Scholar

[22]

Yu. Safarov, Distributions, Fourier transforms and microlocal analysis,, Working Paper, (1996). Google Scholar

[23]

Elias M. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton University Press, (1970). Google Scholar

[24]

Elias M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals,", Princeton University Press, (1993). Google Scholar

[25]

Michael E. Taylor, "Pseudodifferential Operators and Nonlinear PDE,", Birkhauser, (1991). doi: 10.1007/978-1-4612-0431-2. Google Scholar

[26]

Alain Trouvé and Laurent Younes, Local geometry of deformable templates,, SIAM Journal on Mathematical Analysis, 37 (2005), 17. doi: 10.1137/S0036141002404838. Google Scholar

[27]

Alain Trouvé and Laurent Younes, Metamorphoses through lie group action,, Found. Comp. Math., (2005), 173. doi: 10.1007/s10208-004-0128-z. Google Scholar

[28]

Marc Vaillant and Joan Glaunès, Surface matching via currents,, Proceedings of Information Processing in Medical Imaging (IPMI 2005), 3565 (2005). doi: 10.1007/11505730_32. Google Scholar

[29]

Marc Vaillant, Michael I. Miller, Alain Trouv'e and Laurent Younes, Statistics on diffeomorphisms via tangent space representations,, Neuroimage, 23 (2004). doi: 10.1016/j.neuroimage.2004.07.023. Google Scholar

[30]

Lei Wang, Faisal Beg, Tilak Ratnanather, Can Ceritoglu, Laurent Younes, John C. Morris, John G. Csernansky and Michael I. Miller, Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type,, IEEE Transactions on Medical Imaging, 26 (2007), 462. doi: 10.1109/TMI.2006.887380. Google Scholar

[31]

Lei Wang, Jeffrey S. Swank, Irena E. Glick, Mokhtar H. Gado, Michael I. Miller, John C. Morris and John G. Csernansky, Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type,, NeuroImage, 20 (2003), 667. doi: 10.1109/TMI.2006.887380. Google Scholar

[32]

Laurent Younes, Computable elastic distances between shapes,, SIAM J. Appl. Math, 58 (1998), 565. doi: 10.1137/S0036139995287685. Google Scholar

[33]

Laurent Younes, "Shapes and Diffeomorphisms,", 171 of Applied Mathematical Sciences, 171 (2010). doi: 10.1007/978-3-642-12055-8. Google Scholar

[34]

Eberhard Zeidler, "Applied Functional Analysis: Applications to Mathematical Physics,", Applied Mathematical Sciences. Springer, (1995). Google Scholar

[1]

Lanzhe Liu. Mean oscillation and boundedness of Toeplitz Type operators associated to pseudo-differential operators. Communications on Pure & Applied Analysis, 2015, 14 (2) : 627-636. doi: 10.3934/cpaa.2015.14.627

[2]

JIAO CHEN, WEI DAI, GUOZHEN LU. $L^p$ boundedness for maximal functions associated with multi-linear pseudo-differential operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 883-898. doi: 10.3934/cpaa.2017042

[3]

Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130

[4]

Elena Celledoni, Markus Eslitzbichler, Alexander Schmeding. Shape analysis on Lie groups with applications in computer animation. Journal of Geometric Mechanics, 2016, 8 (3) : 273-304. doi: 10.3934/jgm.2016008

[5]

Robert McOwen, Peter Topalov. Groups of asymptotic diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6331-6377. doi: 10.3934/dcds.2016075

[6]

Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43

[7]

Alessia Berti, Claudio Giorgi, Elena Vuk. Free energies and pseudo-elastic transitions for shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 293-316. doi: 10.3934/dcdss.2013.6.293

[8]

Juan Alonso, Nancy Guelman, Juliana Xavier. Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1817-1827. doi: 10.3934/dcds.2015.35.1817

[9]

Dmitri Burago, Sergei Ivanov. Partially hyperbolic diffeomorphisms of 3-manifolds with Abelian fundamental groups. Journal of Modern Dynamics, 2008, 2 (4) : 541-580. doi: 10.3934/jmd.2008.2.541

[10]

Marta García-Huidobro, Raul Manásevich, J. R. Ward. Vector p-Laplacian like operators, pseudo-eigenvalues, and bifurcation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 299-321. doi: 10.3934/dcds.2007.19.299

[11]

Martin Bauer, Markus Eslitzbichler, Markus Grasmair. Landmark-guided elastic shape analysis of human character motions. Inverse Problems & Imaging, 2017, 11 (4) : 601-621. doi: 10.3934/ipi.2017028

[12]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[13]

Paweł G. Walczak. Expansion growth, entropy and invariant measures of distal groups and pseudogroups of homeo- and diffeomorphisms. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4731-4742. doi: 10.3934/dcds.2013.33.4731

[14]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[15]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[16]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure & Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[17]

Elimhan N. Mahmudov. Optimal control of evolution differential inclusions with polynomial linear differential operators. Evolution Equations & Control Theory, 2019, 8 (3) : 603-619. doi: 10.3934/eect.2019028

[18]

Xin Chen, Ana Bela Cruzeiro. Stochastic geodesics and forward-backward stochastic differential equations on Lie groups. Conference Publications, 2013, 2013 (special) : 115-121. doi: 10.3934/proc.2013.2013.115

[19]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[20]

Feng-mei Tao, Lan-sun Chen, Li-xian Xia. Correspondence analysis of body form characteristics of Chinese ethnic groups. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 769-776. doi: 10.3934/dcdsb.2004.4.769

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]