\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Twisted isotropic realisations of twisted Poisson structures

Abstract / Introduction Related Papers Cited by
  • Motivated by the recent connection between nonholonomic integrable systems and twisted Poisson manifolds made in [3], this paper investigates the global theory of integrable Hamiltonian systems on almost symplectic manifolds as an initial step to understand Hamiltonian integrability on twisted Poisson (and Dirac) manifolds. Non-commutative integrable Hamiltonian systems on almost symplectic manifolds were first defined in [17], which proved existence of local generalised action-angle coordinates in the spirit of the Liouville-Arnol'd theorem. In analogy with their symplectic counterpart, these systems can be described globally by twisted isotropic realisations of twisted Poisson manifolds, a special case of symplectic realisations of twisted Dirac structures considered in [8]. This paper classifies twisted isotropic realisations up to smooth isomorphism and provides a cohomological obstruction to the construction of these objects, generalising some of the main results of [13].
    Mathematics Subject Classification: 37J35, 53D15, 53D17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Adler, P. van Moerbeke and P. Vanhaecke, "Algebraic integrability, Painlevé Geometry and Lie Algebras,'' Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics, 47, Springer-Verlag, Berlin, 2004.

    [2]

    P. Ashwin and I. Melbourne, Noncompact drift for relative equilibria and relative periodic orbits, Nonlinearity, 10 (1997), 595-616.doi: 10.1088/0951-7715/10/3/002.

    [3]

    P. Balseiro and L. García-Naranjo, Gauge transformations, twisted Poisson brackets and Hamiltonianization of nonholonomic systems, Arch. Rat. Mech. Anal., 205 (2012), 267-310.doi: 10.1007/s00205-012-0512-9.

    [4]

    L. Bates and R. H. Cushman, What is a completely integrable nonholonomic dynamical system?, in "Proceedings of the XXX Symposium on Mathematical Physics'' (Toruń, 1998), Rep. Math. Phys., 44 (1999), 29-35.doi: 10.1016/S0034-4877(99)80142-6.

    [5]

    G. Blankenstein and T. S. Ratiu, Singular reduction of implicit Hamiltonian systems, Rep. Math. Phys., 53 (2004), 211-260.doi: 10.1016/S0034-4877(04)90013-4.

    [6]

    A. M. Bloch and D. V. Zenkov, Dynamics of the n-Dimensional Suslov problem, J. Geom. Phys., 34 (2000), 121-136.doi: 10.1016/S0393-0440(99)00058-3.

    [7]

    O. I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems, Comm. Math. Phys., 196 (1998), 19-51.doi: 10.1007/s002200050412.

    [8]

    H. Bursztyn, M. Crainic, A. Weinstein and C. Zhu, Integration of twisted Dirac brackets, Duke Math. J., 123 (2004), 549-607.doi: 10.1215/S0012-7094-04-12335-8.

    [9]

    A. S. Cattaneo and P. Xu, Integration of twisted Poisson structures, J. Geom. Phys., 49 (2004), 187-196.doi: 10.1016/S0393-0440(03)00086-X.

    [10]

    M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2), 157 (2003), 575-620.doi: 10.4007/annals.2003.157.575.

    [11]

    M. Crainic and R. L. Fernandes, Integrability of Poisson brackets, J. Diff. Geom., 66 (2004), 71-137.

    [12]

    R. H. Cushman and J. J. Duistermaat, Non-Hamiltonian monodromy, J. Diff. Eq., 172 (2001), 42-58.doi: 10.1006/jdeq.2000.3852.

    [13]

    P. Dazord and P. Delzant, Le problème général des variables actions-angles, J. Diff. Geom., 26 (1987), 223-251.

    [14]

    J. B. Delos, G. Dhont, D. A. Sadovskií and B. I. Zhilinskií, Dynamical manifestations of Hamiltonian monodromy, Ann. Physics, 324 (2009), 1953-1982.doi: 10.1016/j.aop.2009.03.008.

    [15]

    J. J. Duistermaat, On global action-angle coordinates, Comm. Pure Appl. Math., 33 (1980), 687-706.doi: 10.1002/cpa.3160330602.

    [16]

    A. El Kacimi-Alaoui, Sur la cohomologie feuilletée, Compositio Math., 49 (1983), 195-215.

    [17]

    F. Fassò and N. Sansonetto, Integrable almost-symplectic Hamiltonian systems, J. Math. Phys., 48 (2007), 092902, 13 pp.doi: 10.1063/1.2783937.

    [18]

    F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations, Acta Appl. Math., 87 (2005), 93-121.doi: 10.1007/s10440-005-1139-8.

    [19]
    [20]

    F. Fassò, F. and A. Giacobbe, Geometry of invariant tori of certain integrable systems with symmetry and an application to a nonholonomic system, SIGMA Symmetry Integrability Geom. Methods Appl., 3 (2007), 051, 12 pp.doi: 10.3842/SIGMA.2007.051.

    [21]

    M. Field, Equivariant dynamical systems, Trans. Amer. Math. Soc., 259 (1980), 185-205.doi: 10.1090/S0002-9947-1980-0561832-4.

    [22]

    W. M. Goldman, M. W. Hirsch and G. Levitt, Invariant measures for affine foliations, Proc. Amer. Math. Soc., 86 (1982), 511-518.doi: 10.1090/S0002-9939-1982-0671227-8.

    [23]

    J. Hermans, A symmetric sphere rolling on a surface, Nonlinearity, 8 (1995), 493-515.doi: 10.1088/0951-7715/8/4/003.

    [24]

    C. Klimčík and T. Strobl, WZW-Poisson manifolds, J. Geom. Phys., 43 (2002), 341-344.doi: 10.1016/S0393-0440(02)00027-X.

    [25]

    Y. Kosmann-Schwarzbach, Quasi, twisted, and all that... in Poisson geometry and Lie algebroid theory, in "The Breadth of Symplectic and Poisson Geometry," Progress in Mathematics, 232, Birkhäuser Boston, Boston, MA, (2005), 363-389.doi: 10.1007/0-8176-4419-9_12.

    [26]

    C. Laurent-Gengoux, E. Miranda and P. Vanhaecke, Action-angle coordinates for integrable systems on Poisson manifolds, Int. Math. Res. Not., 8 (2011), 1839-1869.doi: 10.1093/imrn/rnq130.

    [27]

    K. C. H. Mackenzie, "General Theory Of Lie Groupoids and Lie Algebroids,'' London Mathematical Society Lecture Notes Series, 213, Cambridge University Press, Cambridge, 2005.

    [28]

    J. E. Marsden and T. S. Ratiu, "Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems,'' Texts in Applied Mathematics, 17, Springer-Verlag, New York, 1994.doi: 10.1007/978-1-4612-2682-6.

    [29]

    A. S. Miščenko and A. T, Fomenko, Integration of Hamiltonian systems with noncommutative symmetries, Trudy Sem. Vektor. Tenzor. Anal., 20 (1981), 5-54.

    [30]

    I. Moerdijk and J. Mrčun, "Introduction to Foliations and Lie Groupoids,'' Cambridge Studies in Advanced Mathematics, 91, Cambridge University Press, Cambridge, 2003.doi: 10.1017/CBO9780511615450.

    [31]

    N. N. Nehorošev, Action-angle variables and their generalizations, (Russian) Trudy Moskov. Mat. Obšč, 26 (1972), 180-198.

    [32]

    J.-S. Park, Topological open p-branes, in "Symplectic Geometry and Mirror Symmetry'' (Seoul, 2000), World Sci. Publ., River Edge, NJ, (2001), 311-384.doi: 10.1142/9789812799821_0010.

    [33]

    A. Pelayo, T. S. Ratiu and S. Vũ NgocSymplectic bifurcation theory for integrable systems, preprint, arXiv:1108.0328.

    [34]

    C. A. RossiPrincipal bundles with groupoid structure: Local vs. global theory and nonabelian Čech cohomology, preprint, arXiv:math/0404449.

    [35]
    [36]

    D. Sepe, Almost Lagrangian obstruction, Diff. Geom. Appl., 29 (2011), 787-800.doi: 10.1016/j.difgeo.2011.08.007.

    [37]

    P. Ševera and A. Weinstein, Poisson geometry with a 3-form background, in "Noncommutative Geometry and String Theory'' (Yokohama, 2001), Progr. Theoret. Phys. Suppl., 144 (2001), 145-154.doi: 10.1143/PTPS.144.145.

    [38]

    I. Vaisman, "Lectures on the Geometry of Poisson Manifolds,'' Progress in Mathematics, 118, Birkäuser Verlag, Basel, 1994.doi: 10.1007/978-3-0348-8495-2.

    [39]

    A. Weinstein, Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc., 16 (1988), 101-104.doi: 10.1090/S0273-0979-1987-15473-5.

    [40]

    D. V. Zenkov, The geometry of the Routh problem, Jour. Nonlin. Science, 5 (1995), 503-519.doi: 10.1007/BF01209025.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(118) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return