    September  2013, 5(3): 319-344. doi: 10.3934/jgm.2013.5.319

## On Euler's equation and 'EPDiff'

 1 Division of Applied Mathematics, Brown University, Box F, Providence, RI 02912, United States 2 Fakultät für Mathematik, Universität Wien, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria

Received  November 2012 Revised  June 2013 Published  September 2013

We study a family of approximations to Euler's equation depending on two parameters $\epsilon,η \ge 0$. When $\epsilon = η = 0$ we have Euler's equation and when both are positive we have instances of the class of integro-differential equations called EPDiff in imaging science. These are all geodesic equations on either the full diffeomorphism group ${Diff}_{H^\infty}(\mathbb{R}^n)$ or, if $\epsilon = 0$, its volume preserving subgroup. They are defined by the right invariant metric induced by the norm on vector fields given by $||v||_{\epsilon,η} = \int_{\mathbb{R}^n} \langle L_{\epsilon,η} v, v \rangle\, dx$ where $L_{\epsilon,η} = (I-\frac{η^2}{p} \triangle)^p \circ (I-\frac {1}{\epsilon^2} \nabla \circ div)$. All geodesic equations are locally well-posed, and the $L_{\epsilon,η}$-equation admits solutions for all time if $η > 0$ and $p\ge (n+3)/2$. We tie together solutions of all these equations by estimates which, however, are only local in time. This approach leads to a new notion of momentum which is transported by the flow and serves as a generalization of vorticity. We also discuss how delta distribution momenta lead to vortex-solitons", also called landmarks" in imaging science, and to new numeric approximations to fluids.
Citation: David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319
##### References:
  "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", Edited by Milton Abramowitz and Irene A. Stegun,, Reprint of the 1972 edition. Dover Publications, (1972). Google Scholar  V. I. Arnold, Sur la géomtrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de L'Institut Fourier, 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar  M. Bauer, P. Harms, and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM Journal on Imaging Sciences, 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar  Thomas Buttke, The fast adaptive vortex method,, Journal of Computational Physics, 93 (1991).  doi: 10.1016/0021-9991(91)90198-T.  Google Scholar  Roberto Camassa and Darryl Holm, An integrable shallow water equation with peaked solutions,, Physical Review Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar  Alexandre Chorin, "Vorticity and Turbulence,", Springer-Verlag, (1994). Google Scholar  Ricardo Cortez, On the accuracy of impulse methods for fluid flow,, SIAM Journal on Scientific Computing, 19 (1998), 1290.  doi: 10.1137/S1064827595293570.  Google Scholar  Darryl Holm, Jerrold Marsden and Tudor Ratiu, The Euler-Poincarè equations and semidirect products with applications to continuum theories,, Advances in Mathematics, 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar  Darryl Holm and Jerrold Marsden, Momentum maps and measure-valued solutions for the EPDiff equation,, in, 232 (2004), 203.  doi: 10.1007/0-8176-4419-9_8. Google Scholar  Lars Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer-Verlag, (1983).   Google Scholar  Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 27. Google Scholar  Mario Micheli, Peter Michor and David Mumford, Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks,, SIAM Journal on Imaging Sciences, 5 (2012), 394.  doi: 10.1137/10081678X.  Google Scholar  Mario Micheli, Peter W. Michor and David Mumford, Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds,, Izvestiya: Mathematics, 77 (2013), 541.  doi: 10.1070/IM2013v077n03ABEH002648. Google Scholar  Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Documenta Mathematica, 10 (2005), 217. Google Scholar  Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Applied and Computational Harmonic Analysis, 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar  Peter W. Michor and David Mumford, A zoo of diffeomorphism groups on $\mathbbR^n$,, Annals of Global Ananlysis and Geometry, (2013).  doi: 10.1007/s10455-013-9380-2. Google Scholar  Michael I. Miller, Gary E. Christensen, Yali Amit and Ulf Grenander, Mathematical textbook of deformable neuroanatomies,, Proceedings National Academy of Science, 90 (1993), 11944.  doi: 10.1073/pnas.90.24.11944. Google Scholar  Michael Miller, Alain Trouvé and Laurent Younes, On the metrics and Euler-Lagrange equations of computational anatomy,, Annual Review of Biomedical Engineering, (2002), 375.   Google Scholar  V. I. Oseledets, On a new way of writing the Navier-Stokes equations: The Hamiltonian formalism,, Communications of the Moscow Mathematical Society (1988). Translation in Russian Mathematics Surveys, 44 (1988), 210.  doi: 10.1070/RM1989v044n03ABEH002122.  Google Scholar  P. H. Roberts, A Hamiltonian theory for weakly interacting vortices,, Mathematika, 19 (1972), 169.  doi: 10.1112/S0025579300005611. Google Scholar  Michael E. Taylor, "Partial Differential Equations III: Nonlinear Equations,", Springer, (2010). Google Scholar  Alain Trouvé and Laurent Younes, Local geometry of deformable templates,, SIAM Journal on Mathematical Analysis, 37 (2005), 17.  doi: 10.1137/S0036141002404838.  Google Scholar  L. Younes, "Shapes and Diffeomorphisms,", Springer, (2010).  doi: 10.1007/978-3-642-12055-8.  Google Scholar

show all references

##### References:
  "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables,", Edited by Milton Abramowitz and Irene A. Stegun,, Reprint of the 1972 edition. Dover Publications, (1972). Google Scholar  V. I. Arnold, Sur la géomtrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Annales de L'Institut Fourier, 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar  M. Bauer, P. Harms, and P. W. Michor, Almost local metrics on shape space of hypersurfaces in n-space,, SIAM Journal on Imaging Sciences, 5 (2012), 244.  doi: 10.1137/100807983.  Google Scholar  Thomas Buttke, The fast adaptive vortex method,, Journal of Computational Physics, 93 (1991).  doi: 10.1016/0021-9991(91)90198-T.  Google Scholar  Roberto Camassa and Darryl Holm, An integrable shallow water equation with peaked solutions,, Physical Review Letters, 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar  Alexandre Chorin, "Vorticity and Turbulence,", Springer-Verlag, (1994). Google Scholar  Ricardo Cortez, On the accuracy of impulse methods for fluid flow,, SIAM Journal on Scientific Computing, 19 (1998), 1290.  doi: 10.1137/S1064827595293570.  Google Scholar  Darryl Holm, Jerrold Marsden and Tudor Ratiu, The Euler-Poincarè equations and semidirect products with applications to continuum theories,, Advances in Mathematics, 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar  Darryl Holm and Jerrold Marsden, Momentum maps and measure-valued solutions for the EPDiff equation,, in, 232 (2004), 203.  doi: 10.1007/0-8176-4419-9_8. Google Scholar  Lars Hörmander, "The Analysis of Linear Partial Differential Operators. I,", Springer-Verlag, (1983).   Google Scholar  Tosio Kato, Quasi-linear equations of evolution, with applications to partial differential equations,, in, 448 (1975), 27. Google Scholar  Mario Micheli, Peter Michor and David Mumford, Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks,, SIAM Journal on Imaging Sciences, 5 (2012), 394.  doi: 10.1137/10081678X.  Google Scholar  Mario Micheli, Peter W. Michor and David Mumford, Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds,, Izvestiya: Mathematics, 77 (2013), 541.  doi: 10.1070/IM2013v077n03ABEH002648. Google Scholar  Peter W. Michor and David Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Documenta Mathematica, 10 (2005), 217. Google Scholar  Peter W. Michor and David Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Applied and Computational Harmonic Analysis, 23 (2007), 74.  doi: 10.1016/j.acha.2006.07.004.  Google Scholar  Peter W. Michor and David Mumford, A zoo of diffeomorphism groups on $\mathbbR^n$,, Annals of Global Ananlysis and Geometry, (2013).  doi: 10.1007/s10455-013-9380-2. Google Scholar  Michael I. Miller, Gary E. Christensen, Yali Amit and Ulf Grenander, Mathematical textbook of deformable neuroanatomies,, Proceedings National Academy of Science, 90 (1993), 11944.  doi: 10.1073/pnas.90.24.11944. Google Scholar  Michael Miller, Alain Trouvé and Laurent Younes, On the metrics and Euler-Lagrange equations of computational anatomy,, Annual Review of Biomedical Engineering, (2002), 375.   Google Scholar  V. I. Oseledets, On a new way of writing the Navier-Stokes equations: The Hamiltonian formalism,, Communications of the Moscow Mathematical Society (1988). Translation in Russian Mathematics Surveys, 44 (1988), 210.  doi: 10.1070/RM1989v044n03ABEH002122.  Google Scholar  P. H. Roberts, A Hamiltonian theory for weakly interacting vortices,, Mathematika, 19 (1972), 169.  doi: 10.1112/S0025579300005611. Google Scholar  Michael E. Taylor, "Partial Differential Equations III: Nonlinear Equations,", Springer, (2010). Google Scholar  Alain Trouvé and Laurent Younes, Local geometry of deformable templates,, SIAM Journal on Mathematical Analysis, 37 (2005), 17.  doi: 10.1137/S0036141002404838.  Google Scholar  L. Younes, "Shapes and Diffeomorphisms,", Springer, (2010).  doi: 10.1007/978-3-642-12055-8.  Google Scholar
  Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168  Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056  Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266  Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136  Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345  Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384  Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317  Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079  Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081  Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364  Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454  Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448  Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432  Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262  Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319  Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074  Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247  Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243  S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435  Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $p$-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 0.649