\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Kadomtsev-Petviashvili hierarchy and the Mulase factorization of formal Lie groups

Abstract / Introduction Related Papers Cited by
  • We present explicit formal solutions to the systems of equations in two independent variables $t_m$, $x$, $m =1,2,\dots$, of the Kadomtsev-Petviashvili hierarchy. The main tools used are a Birkhoff-like factorization of formal Lie groups due to M. Mulase, and the classical theory of A.G. Reyman and M.A. Semenov-Tian-Shansky on the integration of Hamiltonian systems on coadjoint orbits using $r$-matrices. Our paper also contains full proofs of Mulase's results.
    Mathematics Subject Classification: Primary: 37K10, 37K30; Secondary: 17B80, 22E67.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Adler, On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-Devries type equations, Inventiones Mathematicae, 50 (1979), 219-248.doi: 10.1007/BF01410079.

    [2]

    N. Bourbaki, "Algebra I. Chapters 1-3. Elements of Mathematics," Springer-Verlag, Berlin, 1998.

    [3]

    E. E. Demidov, On the Kadomtsev-Petviashvili hierarchy with a noncommutative timespace, Functional Analysis and Its Applications, 29 (1995), 131-133.doi: 10.1007/BF01080014.

    [4]

    E. E. Demidov, Noncommutative deformation of the Kadomtsev-Petviashvili hierarchy, In "Algebra. 5, Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI)," Moscow, 1995. (Russian), Journal of Mathematical Sciences (New York), 88 (1998), 520-536 (English).doi: 10.1007/BF02365314.

    [5]

    L. A. Dickey, "Soliton Equations and Hamiltonian Systems," Second Edition, Advanced Series in Mathematical Physics $12$, World Scientific Publ. Co., Singapore, 2003.

    [6]

    L. D. Faddeev, and L. A. Takhtajan, "Hamiltonian Methods in the Theory of Solitons," Springer Series in Soviet Mathematics, Springer-Verlag, Berlin-New York, 1987.

    [7]

    B. A. Khesin and I. Zakharevich, Poisson-Lie groups of pseudodifferential symbols, Communications in Mathematical Physics, 171 (1995), 475-530.doi: 10.1007/BF02104676.

    [8]

    B. A. Khesin and G. Misiolek, Euler equations on homogeneous spaces and Virasoro orbits, Advances in Mathematics, 176 (2003), 116-144.doi: 10.1016/S0001-8708(02)00063-4.

    [9]

    B. A. Khesin and R. Wendt, "The Geometry of Infinite-Dimensional Groups," Springer-Verlag, Berlin, 2009.

    [10]

    F. Kubo, Non-commutative Poisson algebra structures on affine Kac-Moody algebras, Journal of Pure and Applied Algebra, 126 (1998), 267-286.doi: 10.1016/S0022-4049(96)00141-7.

    [11]

    L.-C. Li, Factorization problem on the Hilbert-Schmidt group and the Camassa-Holm equation, Communications on Pure and Applied Mathematics, 61 (2008), 186-209.doi: 10.1002/cpa.20207.

    [12]

    J. Marsden and T. Ratiu, Introduction to Mechanics and Symmetry. A Basic Exposition of Classical Mechanical Systems," Second edition, Texts in Applied Mathematics, 17. Springer-Verlag, New York, 1999.

    [13]

    J. Mickelsson, "Current Algebras and Groups," Plenum Press, New York and London, 1989.

    [14]

    A. V. Mikhailov, A. B. Shabat and V. V. Sokolov, The symmetry approach to classification of integrable equations, in "What is Integrability?" (ed. V.E. Zakharov), Springer Ser. Nonlinear Dynam., Springer, Berlin, (1991), 115-184.

    [15]

    M. Mulase, Complete integrability of the Kadomtsev-Petvishvili equation, Advances in Mathematics, 54 (1984), 57-66.doi: 10.1016/0001-8708(84)90036-7.

    [16]

    M. Mulase, Cohomological structure in soliton equations and Jacobian varieties, J. Differential Geom., 19 (1984), 403-430.

    [17]

    M. Mulase, Solvability of the super KP equation and a generalization of the Birkhoff decomposition, Inventiones Mathematicae, 92 (1988), 1-46.doi: 10.1007/BF01393991.

    [18]

    P. J. Olver, "Applications of Lie Groups to Differential Equations," Second Edition, Springer-Verlag, New York, 1993.

    [19]

    P. J. Olver and V. V. Sokolov, Integrable evolution equations on associative algebras, Communications in Mathematical Physics, 193 (1998) 245-268.doi: 10.1007/s002200050328.

    [20]

    A. N. Parshin, On a ring of formal pseudo-differential operators, Proc. Steklov Inst. Math. 224 (1999), 266-280.

    [21]

    A. M. Perelomov, "Integrable Systems of Classical Mechanics And Lie Algebras," Birkhäuser Verlag, Berlin, 1990.doi: 10.1007/978-3-0348-9257-5.

    [22]

    A. Pressley and G.B. Segal, "Loop Groups," Oxford University Press, 1986.

    [23]

    A. G. Reyman and M. A. Semenov-Tian-Shansky, Reduction of Hamiltonian systems, affine Lie algebras and Lax equations II, Inventiones mathematicae, 63 (1981), 423-432.doi: 10.1007/BF01389063.

    [24]

    M. Sakakibara, Factorization methods for noncommutative KP and Toda hierarchy, Journal of Physics A: Mathematical and General, 37 (2004), L599-L604.doi: 10.1088/0305-4470/37/45/L02.

    [25]

    M. A. Semenov-Tian-Shansky, What is a classical $r$-matrix?, Funct. Anal. Appl., 17 (1983), 259-272.

    [26]

    K. Takasaki, A new approach to the self-dual Yang-Mills equations, Communications in Mathematical Physics, 94 (1984), 35-59.doi: 10.1007/BF01212348.

    [27]

    K. Takasaki, A new approach to the self-dual Yang-Mills equations II, Saitama Math.J., 3 (1985), 11-40.

    [28]

    K. Takasaki, Dressing operator approach to Moyal algebraic deformation of selfdual gravity, Journal of Geometry and Physics, 14 (1994), 111-120.doi: 10.1016/0393-0440(94)90003-5.

    [29]

    K. Takasaki, Nonabelian KP hierarchy with Moyal algebraic coefficients, Journal of Geometry and Physics, 14 (1994), 332-364.doi: 10.1016/0393-0440(94)90040-X.

    [30]

    D. A. Tuganbaev, Laurent series rings and pseudo-differential operator rings, Journal of Mathematical Sciences (NY), 128 (2005), 2843-2893.doi: 10.1007/s10958-005-0244-6.

    [31]

    Y. Watanabe, Hamiltonian structure of Sato's hierarchy of KP equations and a coadjoint orbit of a certain formal Lie group, Letters in Mathematical Physics, 7 (1983), 99-106.doi: 10.1007/BF00419926.

    [32]

    Y. Watanabe, Hamiltonian structure of M. Sato's hierarchy of Kadomtsev-Petviashvili equation, Annali di Matematica Pura ed Applicata, 136 (1984), 77-93.doi: 10.1007/BF01773378.

    [33]

    A. B. ZheglovOn rings of commuting partial differential operators, preprint, arXiv:1106.0765.

    [34]

    A. B. ZheglovTwo dimensional KP systems and their solvability, preprint, arXiv:math-ph/0503067.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(167) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return