December  2013, 5(4): 381-397. doi: 10.3934/jgm.2013.5.381

Discrete second order constrained Lagrangian systems: First results

1. 

Depto. de Matemática, Facultad de Ciencias Exactas, UNLP, Instituto Balseiro, UNCu - CNEA - CONICET, 50 y 115, La Plata, Buenos Aires, 1900, Argentina

2. 

Instituto Balseiro, Universidad Nacional de Cuyo – C.N.E.A., Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP

3. 

Instituto Balseiro, UNCu - CNEA - CONICET, Av. Bustillo 9500, San Carlos de Bariloche, R8402AGP, Argentina

Received  March 2013 Revised  November 2013 Published  December 2013

We briefly review the notion of second order constrained (continuous) system (SOCS) and then propose a discrete time counterpart of it, which we naturally call discrete second order constrained system (DSOCS). To illustrate and test numerically our model, we construct certain integrators that simulate the evolution of two mechanical systems: a particle moving in the plane with prescribed signed curvature, and the inertia wheel pendulum with a Lyapunov constraint. In addition, we prove a local existence and uniqueness result for trajectories of DSOCSs. As a first comparison of the underlying geometric structures, we study the symplectic behavior of both SOCSs and DSOCSs.
Citation: Nicolás Borda, Javier Fernández, Sergio Grillo. Discrete second order constrained Lagrangian systems: First results. Journal of Geometric Mechanics, 2013, 5 (4) : 381-397. doi: 10.3934/jgm.2013.5.381
References:
[1]

R. Benito and D. Martín de Diego, Hidden symplecticity in Hamilton's principle algorithms,, in Differential Geometry and its Applications, (2005), 411. Google Scholar

[2]

R. Benito, M. de León and D. Martín de Diego, Higher-order discrete Lagrangian mechanics,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 421. doi: 10.1142/S0219887806001235. Google Scholar

[3]

A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics, (2003). Google Scholar

[4]

N. Borda, Sistemas Mecánicos Discretos con Vínculos de Orden 2,, Tesis de Maestría en Ciencias Físicas, (2011). Google Scholar

[5]

C. M. Campos, H. Cendra, V. Díaz and D. Martín de Diego, Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk,, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 225. doi: 10.1007/s13398-011-0053-3. Google Scholar

[6]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2165797. Google Scholar

[7]

H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2740470. Google Scholar

[8]

H. Cendra, A. Ibort, M. de León and D. Martín de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245. Google Scholar

[9]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001). doi: 10.1090/memo/0722. Google Scholar

[10]

N. G. Chetaev, On the Gauss principle,, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68. Google Scholar

[11]

L. Colombo, D. Martín de Diego and M. Zuccalli, Higher-order discrete variational problems with constraints,, J. Math. Phys., 54 (2013). doi: 10.1063/1.4820817. Google Scholar

[12]

J. Cortés and S. Martínez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365. Google Scholar

[13]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Lecture Notes in Mathematics, (1793). doi: 10.1007/b84020. Google Scholar

[14]

M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565. doi: 10.1017/S0305004100064501. Google Scholar

[15]

M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives,, North-Holland Mathematics Studies, (1985). Google Scholar

[16]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004), 1042. doi: 10.1063/1.1644325. Google Scholar

[17]

V. Dobronravov, The Fundamentals of the Mechanics of Nonholonomic Systems,, Vysshaya Shkola, (1970). Google Scholar

[18]

J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69. doi: 10.3934/jgm.2010.2.69. Google Scholar

[19]

S. Grillo, Higher order constraints Hamiltonian systems,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3194782. Google Scholar

[20]

S. Grillo, Sistemas Noholónomos Generalizados,, Tesis de Doctorado en Matemática, (2007). Google Scholar

[21]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 857. doi: 10.1142/S0219887810004580. Google Scholar

[22]

S. Grillo, J. E. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization,, J. Geom. Mech., 3 (2011), 145. doi: 10.3934/jgm.2011.3.145. Google Scholar

[23]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,, Second edition, (2006). Google Scholar

[24]

O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304. doi: 10.1063/1.533411. Google Scholar

[25]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353. Google Scholar

[26]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357. doi: 10.1017/S096249290100006X. Google Scholar

[27]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283. doi: 10.1007/s00332-005-0698-1. Google Scholar

[28]

Yu. Neĭmark and N. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar

[29]

G. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems,, Numer. Math., 113 (2009), 243. doi: 10.1007/s00211-009-0245-3. Google Scholar

[30]

A. Shiriaev, J. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Trans. Automat. Control, 50 (2005), 1164. doi: 10.1109/TAC.2005.852568. Google Scholar

[31]

M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order,, AIP Conf. Proc., 1360 (2011), 164. doi: 10.1063/1.3599143. Google Scholar

show all references

References:
[1]

R. Benito and D. Martín de Diego, Hidden symplecticity in Hamilton's principle algorithms,, in Differential Geometry and its Applications, (2005), 411. Google Scholar

[2]

R. Benito, M. de León and D. Martín de Diego, Higher-order discrete Lagrangian mechanics,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 421. doi: 10.1142/S0219887806001235. Google Scholar

[3]

A. M. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics, (2003). Google Scholar

[4]

N. Borda, Sistemas Mecánicos Discretos con Vínculos de Orden 2,, Tesis de Maestría en Ciencias Físicas, (2011). Google Scholar

[5]

C. M. Campos, H. Cendra, V. Díaz and D. Martín de Diego, Discrete Lagrange-d'Alembert-Poincaré equations for Euler's disk,, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM, 106 (2012), 225. doi: 10.1007/s13398-011-0053-3. Google Scholar

[6]

H. Cendra and S. Grillo, Generalized nonholonomic mechanics, servomechanisms and related brackets,, J. Math. Phys., 47 (2006). doi: 10.1063/1.2165797. Google Scholar

[7]

H. Cendra and S. D. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys., 48 (2007). doi: 10.1063/1.2740470. Google Scholar

[8]

H. Cendra, A. Ibort, M. de León and D. Martín de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785. doi: 10.1063/1.1763245. Google Scholar

[9]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian reduction by stages,, Mem. Amer. Math. Soc., 152 (2001). doi: 10.1090/memo/0722. Google Scholar

[10]

N. G. Chetaev, On the Gauss principle,, Izv. Fiz-Mat. Obsc. Kazan Univ., 7 (1934), 68. Google Scholar

[11]

L. Colombo, D. Martín de Diego and M. Zuccalli, Higher-order discrete variational problems with constraints,, J. Math. Phys., 54 (2013). doi: 10.1063/1.4820817. Google Scholar

[12]

J. Cortés and S. Martínez, Nonholonomic integrators,, Nonlinearity, 14 (2001), 1365. Google Scholar

[13]

J. Cortés Monforte, Geometric, Control and Numerical Aspects of Nonholonomic Systems,, Lecture Notes in Mathematics, (1793). doi: 10.1007/b84020. Google Scholar

[14]

M. Crampin, W. Sarlet and F. Cantrijn, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565. doi: 10.1017/S0305004100064501. Google Scholar

[15]

M. de León and P. Rodrigues, Generalized Classical Mechanics and Field Theory. A Geometrical Approach of Lagrangian and Hamiltonian Formalisms Involving Higher Order Derivatives,, North-Holland Mathematics Studies, (1985). Google Scholar

[16]

M. de León, D. Martín de Diego and A. Santamaría-Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004), 1042. doi: 10.1063/1.1644325. Google Scholar

[17]

V. Dobronravov, The Fundamentals of the Mechanics of Nonholonomic Systems,, Vysshaya Shkola, (1970). Google Scholar

[18]

J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems,, J. Geom. Mech., 2 (2010), 69. doi: 10.3934/jgm.2010.2.69. Google Scholar

[19]

S. Grillo, Higher order constraints Hamiltonian systems,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3194782. Google Scholar

[20]

S. Grillo, Sistemas Noholónomos Generalizados,, Tesis de Doctorado en Matemática, (2007). Google Scholar

[21]

S. Grillo, F. Maciel and D. Pérez, Closed-loop and constrained mechanical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 857. doi: 10.1142/S0219887810004580. Google Scholar

[22]

S. Grillo, J. E. Marsden and S. Nair, Lyapunov constraints and global asymptotic stabilization,, J. Geom. Mech., 3 (2011), 145. doi: 10.3934/jgm.2011.3.145. Google Scholar

[23]

E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations,, Second edition, (2006). Google Scholar

[24]

O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304. doi: 10.1063/1.533411. Google Scholar

[25]

C.-M. Marle, Kinematic and geometric constraints, servomechanism and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353. Google Scholar

[26]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numer., 10 (2001), 357. doi: 10.1017/S096249290100006X. Google Scholar

[27]

R. McLachlan and M. Perlmutter, Integrators for nonholonomic mechanical systems,, J. Nonlinear Sci., 16 (2006), 283. doi: 10.1007/s00332-005-0698-1. Google Scholar

[28]

Yu. Neĭmark and N. Fufaev, Dynamics of Nonholonomic Systems,, Translations of Mathematical Monographs, (1972). Google Scholar

[29]

G. Patrick and C. Cuell, Error analysis of variational integrators of unconstrained Lagrangian systems,, Numer. Math., 113 (2009), 243. doi: 10.1007/s00211-009-0245-3. Google Scholar

[30]

A. Shiriaev, J. Perram and C. Canudas-de-Wit, Constructive tool for orbital stabilization of underactuated nonlinear systems: Virtual constraints approach,, IEEE Trans. Automat. Control, 50 (2005), 1164. doi: 10.1109/TAC.2005.852568. Google Scholar

[31]

M. Swaczyna, Mechanical systems with nonholonomic constraints of the second order,, AIP Conf. Proc., 1360 (2011), 164. doi: 10.1063/1.3599143. Google Scholar

[1]

Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527

[2]

Jean-Marie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 595-607. doi: 10.3934/dcds.2007.19.595

[3]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[4]

Gianne Derks. Book review: Geometric mechanics. Journal of Geometric Mechanics, 2009, 1 (2) : 267-270. doi: 10.3934/jgm.2009.1.267

[5]

Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487-574. doi: 10.3934/jgm.2017019

[6]

François Gay-Balmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-14. doi: 10.3934/dcdss.2020071

[7]

Waldyr M. Oliva, Gláucio Terra. Improving E. Cartan considerations on the invariance of nonholonomic mechanics. Journal of Geometric Mechanics, 2019, 11 (3) : 439-446. doi: 10.3934/jgm.2019022

[8]

Marin Kobilarov, Jerrold E. Marsden, Gaurav S. Sukhatme. Geometric discretization of nonholonomic systems with symmetries. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 61-84. doi: 10.3934/dcdss.2010.3.61

[9]

Juan Carlos Marrero, David Martín de Diego, Ari Stern. Symplectic groupoids and discrete constrained Lagrangian mechanics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 367-397. doi: 10.3934/dcds.2015.35.367

[10]

Eliot Fried. New insights into the classical mechanics of particle systems. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1469-1504. doi: 10.3934/dcds.2010.28.1469

[11]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[12]

Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493

[13]

Elimhan N. Mahmudov. Optimal control of second order delay-discrete and delay-differential inclusions with state constraints. Evolution Equations & Control Theory, 2018, 7 (3) : 501-529. doi: 10.3934/eect.2018024

[14]

Brian Straughan. Shocks and acceleration waves in modern continuum mechanics and in social systems. Evolution Equations & Control Theory, 2014, 3 (3) : 541-555. doi: 10.3934/eect.2014.3.541

[15]

Miguel Rodríguez-Olmos. Book review: Geometric mechanics and symmetry, by Darryl D. Holm, Tanya Schmah and Cristina Stoica. Journal of Geometric Mechanics, 2009, 1 (4) : 483-488. doi: 10.3934/jgm.2009.1.483

[16]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[17]

Anthony M. Bloch, Melvin Leok, Jerrold E. Marsden, Dmitry V. Zenkov. Controlled Lagrangians and stabilization of discrete mechanical systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 19-36. doi: 10.3934/dcdss.2010.3.19

[18]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[19]

Jean-Claude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807-813. doi: 10.3934/proc.2013.2013.807

[20]

Vieri Benci. Solitons and Bohmian mechanics. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 303-317. doi: 10.3934/dcds.2002.8.303

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (1)

[Back to Top]