December  2013, 5(4): 399-414. doi: 10.3934/jgm.2013.5.399

Lagrange-Poincaré reduction in affine principal bundles

1. 

ICMAT (CSIC-UAM-UC3M-UAM), Dpto. Geometría y Topología, Universidad Complutense de Madrid, 28040 Madrid, Spain

2. 

Dpto. Matemáticas, Universidad de Salamanca, Plaza de la Merced 1-4, 37008 Salamanca, Spain

3. 

IUFFyM-USAL and Real Academia de Ciencias, Plaza de la Merced 1-4, 37008 Salamanca

Received  June 2013 Revised  November 2013 Published  December 2013

Given an $H$-principal bundle $Q\to M$ and a (left) linear action of $H$ to a real vector space $V$, let $E\to M$ be the vector bundle associated to $Q$ and to the linear action, and $Q\times_M E$ the affine principal bundle with structure group the semidirect group $G = H Ⓢ V$. If $L v$ is a Lagrangian density defined on the 1-jet bundle $J^1(Q\times_M E)$ invariant by the subgroup $H \hookrightarrow H Ⓢ V$, the variational problem induced on $(J^1(Q\times_ME)) /H = C(Q)\times_M J^1E$, where $C(Q)$ is the bundle of connections in $Q$, is considered. We show that the reduced Lagrangian density $lv$ defines a variational problem on connections $\sigma \in \Gamma (C(Q))$ and on sections $e\in \Gamma(E)$, with constraint $\textrm{Curv }\sigma =0$, and set of admissible variations those induced on $\Gamma (C(Q))$ by the infinitesimal gauge transformations of $Q$ and on $\Gamma(E)$ by arbitrary vertical variations. The Lagrange-Poincaré equations for the critical reduced sections are obtained, as well as the reconstruction process to the unreduced problem. The Poincaré equation is interpreted as the reduction of the Noether conservation law corresponding to the $H$-symmetry of the Lagrangian density $L v$. We also study the reduced system as a Lagrange problem through a suitable choice of the Lagrange multipliers. This allows us to establish a Hamilton-Cartan formalism for this class of systems. Finally, we discuss the molecular strands, a motivating example of the theory.
Citation: Marco Castrillón López, Pablo M. Chacón, Pedro L. García. Lagrange-Poincaré reduction in affine principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 399-414. doi: 10.3934/jgm.2013.5.399
References:
[1]

M. Castrillón López, P. L. García Pérez and T. S. Ratiu, Euler-Poincaré reduction on principal bundles,, Lett. Math. Phys., 58 (2001), 167. doi: 10.1023/A:1013303320765. Google Scholar

[2]

M. Castrillón López, P. L. García Pérez and C. Rodrigo, Euler-Poincaré reduction in principal fibre bundles and the problem of Lagrange,, Differential Geom. Appl., 25 (2007), 585. doi: 10.1016/j.difgeo.2007.06.007. Google Scholar

[3]

M. Castrillón López, P. L. García Pérez and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group,, J. Geom. Phys., 74 (2013), 352. doi: 10.1016/j.geomphys.2013.08.008. Google Scholar

[4]

M. Castrillón López and J. Muñoz Masqué, The geometry of the bundle of connections,, Math. Z., 236 (2001), 797. Google Scholar

[5]

M. Castrillón López and T. S. Ratiu, Reduction in principal bundles: Covariant Lagrange-Poincaré equations,, Comm. Math. Phys., 236 (2003), 223. doi: 10.1007/s00220-003-0797-5. Google Scholar

[6]

M. Castrillón López, T. S. Ratiu and S. Shkoller, Reduction in principal fiber bundles: Covariant Euler-Poincaré equations,, Proc. Amer. Math. Soc., 128 (2000), 2155. doi: 10.1090/S0002-9939-99-05304-6. Google Scholar

[7]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands,, Arch. Ration. Mech. Anal., 197 (2010), 811. doi: 10.1007/s00205-010-0305-y. Google Scholar

[8]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120. doi: 10.1016/j.geomphys.2011.06.007. Google Scholar

[9]

P. L. García, Gauge algebras, curvature and symplectic structure,, J. Differential Geometry, 12 (1977), 209. Google Scholar

[10]

P. L. García, The Poincaré-Cartan invariant in the calculus of variations,, in Symposia Mathematica, (1973), 219. Google Scholar

[11]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems,, J. Geom. Phys., 56 (2006), 571. doi: 10.1016/j.geomphys.2005.04.002. Google Scholar

[12]

H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations,, Ann. Inst. Fourier (Grenoble), 23 (1973), 203. doi: 10.5802/aif.451. Google Scholar

[13]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I,, Interscience Publishers, (1963). Google Scholar

[14]

S. Sternberg, Lectures on Differential Geometry,, Second edition, (1983). Google Scholar

show all references

References:
[1]

M. Castrillón López, P. L. García Pérez and T. S. Ratiu, Euler-Poincaré reduction on principal bundles,, Lett. Math. Phys., 58 (2001), 167. doi: 10.1023/A:1013303320765. Google Scholar

[2]

M. Castrillón López, P. L. García Pérez and C. Rodrigo, Euler-Poincaré reduction in principal fibre bundles and the problem of Lagrange,, Differential Geom. Appl., 25 (2007), 585. doi: 10.1016/j.difgeo.2007.06.007. Google Scholar

[3]

M. Castrillón López, P. L. García Pérez and C. Rodrigo, Euler-Poincaré reduction in principal bundles by a subgroup of the structure group,, J. Geom. Phys., 74 (2013), 352. doi: 10.1016/j.geomphys.2013.08.008. Google Scholar

[4]

M. Castrillón López and J. Muñoz Masqué, The geometry of the bundle of connections,, Math. Z., 236 (2001), 797. Google Scholar

[5]

M. Castrillón López and T. S. Ratiu, Reduction in principal bundles: Covariant Lagrange-Poincaré equations,, Comm. Math. Phys., 236 (2003), 223. doi: 10.1007/s00220-003-0797-5. Google Scholar

[6]

M. Castrillón López, T. S. Ratiu and S. Shkoller, Reduction in principal fiber bundles: Covariant Euler-Poincaré equations,, Proc. Amer. Math. Soc., 128 (2000), 2155. doi: 10.1090/S0002-9939-99-05304-6. Google Scholar

[7]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm, V. Putkaradze and T. S. Ratiu, Symmetry reduced dynamics of charged molecular strands,, Arch. Ration. Mech. Anal., 197 (2010), 811. doi: 10.1007/s00205-010-0305-y. Google Scholar

[8]

D. C. P. Ellis, F. Gay-Balmaz, D. D. Holm and T. S. Ratiu, Lagrange-Poincaré field equations,, J. Geom. Phys., 61 (2011), 2120. doi: 10.1016/j.geomphys.2011.06.007. Google Scholar

[9]

P. L. García, Gauge algebras, curvature and symplectic structure,, J. Differential Geometry, 12 (1977), 209. Google Scholar

[10]

P. L. García, The Poincaré-Cartan invariant in the calculus of variations,, in Symposia Mathematica, (1973), 219. Google Scholar

[11]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems,, J. Geom. Phys., 56 (2006), 571. doi: 10.1016/j.geomphys.2005.04.002. Google Scholar

[12]

H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations,, Ann. Inst. Fourier (Grenoble), 23 (1973), 203. doi: 10.5802/aif.451. Google Scholar

[13]

S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I,, Interscience Publishers, (1963). Google Scholar

[14]

S. Sternberg, Lectures on Differential Geometry,, Second edition, (1983). Google Scholar

[1]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[2]

Henry Jacobs, Joris Vankerschaver. Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes. Journal of Geometric Mechanics, 2014, 6 (1) : 39-66. doi: 10.3934/jgm.2014.6.39

[3]

J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81

[4]

Bas Janssens. Infinitesimally natural principal bundles. Journal of Geometric Mechanics, 2016, 8 (2) : 199-220. doi: 10.3934/jgm.2016004

[5]

V. Balaji, I. Biswas and D. S. Nagaraj. Principal bundles with parabolic structure. Electronic Research Announcements, 2001, 7: 37-44.

[6]

Hernán Cendra, Viviana A. Díaz. Lagrange-d'alembert-poincaré equations by several stages. Journal of Geometric Mechanics, 2018, 10 (1) : 1-41. doi: 10.3934/jgm.2018001

[7]

Javier Fernández, Marcela Zuccalli. A geometric approach to discrete connections on principal bundles. Journal of Geometric Mechanics, 2013, 5 (4) : 433-444. doi: 10.3934/jgm.2013.5.433

[8]

Dietmar Oelz, Alex Mogilner. A drift-diffusion model for molecular motor transport in anisotropic filament bundles. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4553-4567. doi: 10.3934/dcds.2016.36.4553

[9]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[10]

Jeffrey K. Lawson, Tanya Schmah, Cristina Stoica. Euler-Poincaré reduction for systems with configuration space isotropy. Journal of Geometric Mechanics, 2011, 3 (2) : 261-275. doi: 10.3934/jgm.2011.3.261

[11]

François Gay-Balmaz, Cesare Tronci, Cornelia Vizman. Geometric dynamics on the automorphism group of principal bundles: Geodesic flows, dual pairs and chromomorphism groups. Journal of Geometric Mechanics, 2013, 5 (1) : 39-84. doi: 10.3934/jgm.2013.5.39

[12]

Sebastián Ferrer, Martin Lara. Families of canonical transformations by Hamilton-Jacobi-Poincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223-241. doi: 10.3934/jgm.2010.2.223

[13]

Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151

[14]

Simone Göttlich, Ute Ziegler, Michael Herty. Numerical discretization of Hamilton--Jacobi equations on networks. Networks & Heterogeneous Media, 2013, 8 (3) : 685-705. doi: 10.3934/nhm.2013.8.685

[15]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[16]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[17]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[18]

Emanuel-Ciprian Cismas. Euler-Poincaré-Arnold equations on semi-direct products II. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5993-6022. doi: 10.3934/dcds.2016063

[19]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[20]

Martino Bardi, Gabriele Terrone. On the homogenization of some non-coercive Hamilton--Jacobi--Isaacs equations. Communications on Pure & Applied Analysis, 2013, 12 (1) : 207-236. doi: 10.3934/cpaa.2013.12.207

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

[Back to Top]