Advanced Search
Article Contents
Article Contents

A geometric approach to discrete connections on principal bundles

Abstract Related Papers Cited by
  • This work revisits, from a geometric perspective, the notion of discrete connection on a principal bundle, introduced by M. Leok, J. Marsden and A. Weinstein. It provides precise definitions of discrete connection, discrete connection form and discrete horizontal lift and studies some of their basic properties and relationships. An existence result for discrete connections on principal bundles equipped with appropriate Riemannian metrics is proved.
    Mathematics Subject Classification: Primary: 53B15, 53C05; Secondary: 37J15, 70G45.


    \begin{equation} \\ \end{equation}
  • [1]

    H. Cendra, J. E. Marsden and T. S. Ratiu, Geometric mechanics, Lagrangian reduction, and nonholonomic systems, in Mathematics Unlimited-2001 and Beyond, Springer, Berlin, 2001, 221-273.


    _______, Lagrangian reduction by stages, Mem. Amer. Math. Soc., 152 (2001).doi: 10.1090/memo/0722.


    J. Fernández, C. Tori and M. Zuccalli, Lagrangian reduction of nonholonomic discrete mechanical systems, J. Geom. Mech., 2 (2010), 69-111,doi: 10.3934/jgm.2010.2.69.


    _______, Lagrangian reduction of discrete mechanical systems by stages, in preparation.


    V. Guillemin and A. Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974.


    R. Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc., 11 (1960), 236-242.doi: 10.1090/S0002-9939-1960-0112151-4.


    S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. Vol. I, Reprint of the 1963 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1996.


    M. Leok, Foundations of Computational Geometric Mechanics, Ph.D. thesis, California Institute of Technology, 2004.


    M. Leok, J. E. Marsden and A. Weinstein, A discrete theory of connections on principal bundles, arXiv:math/0508338, 2005.


    J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.doi: 10.1088/0951-7715/19/6/006.


    J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numer., 10 (2001), 357-514.doi: 10.1017/S096249290100006X.


    J. Milnor, Morse Theory, Based on lecture notes by M. Spivak and R. Wells, Annals of Mathematics Studies, No. 51, Princeton University Press, Princeton, N.J., 1963.

  • 加载中

Article Metrics

HTML views() PDF downloads(134) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint