-
Previous Article
The Toda lattice, old and new
- JGM Home
- This Issue
-
Next Article
A Poincaré lemma in geometric quantisation
Higher-order mechanics: Variational principles and other topics
1. | Departamento de Matemática Aplicada IV, Universitat Politècnica de Catalunya-BarcelonaTech, Campus Norte, Ed. C-3. C/ Jordi Girona 1, E-08034 Barcelona, Spain, Spain |
References:
[1] |
V. Aldaya and J. A. de Azcárraga, Variational principles on $r-th$ order jets of fibre bundles in field theory,, J. Math. Phys., 19 (1978), 1869.
doi: 10.1063/1.523904. |
[2] |
M. Barbero-Liñán, A. Echeverría-Enrí quez, D. Martín de Diego, M. C. Muñ oz-Lecanda and N. Román-Roy, Unified formalism for non-autonomous mechanical systems,, J. Math. Phys., 49 (2008). Google Scholar |
[3] |
M. Barbero-Liñán, A. Echeverría-Enrí quit, D. Martín de Diego, M. C. Muñoz-Lecanda and N. Román-Roy, Skinner-Rusk unified formalism for optimal control systems and applications,, J. Phys. A, 40 (2007), 12071.
doi: 10.1088/1751-8113/40/40/005. |
[4] |
C. M. Campos, M. de León, D. Martín de Diego and J. Vankerschaver, Unambigous formalism for higher-order Lagrangian field theories,, J. Phys. A, 42 (2009).
doi: 10.1088/1751-8113/42/47/475207. |
[5] |
F. Cantrijn, M. Crampin and W. Sarlet, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565.
doi: 10.1017/S0305004100064501. |
[6] |
L. Colombo, D. Marín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometric approach,, J. Math. Phys., 51 (2010).
doi: 10.1063/1.3456158. |
[7] |
J. Cortés, S. Martínez and F. Cantrijn, Skinner-Rusk approach to time-dependent mechanics,, Phys. Lett. A, 300 (2002), 250.
doi: 10.1016/S0375-9601(02)00777-6. |
[8] |
M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105.
doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N. |
[9] |
M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory,, North-Holland Math. Studies, (1985). Google Scholar |
[10] |
M. de León and P. R. Rodrigues, Higher-order almost tangent geometry and non-autonomous Lagrangian dynamics,, in Proc. Winter School on Geometry and Physics (Srní, (1987), 157. Google Scholar |
[11] |
A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2801875. |
[12] |
A. Echeverría-Enríquez, C. López, J. Marín-Solano, M. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for field theory,, J. Math. Phys., 45 (2004), 360.
doi: 10.1063/1.1628384. |
[13] |
P. L. García, The Poincaré-Cartan invariant in the calculus of variations,, in Symposia Mathematica, (1973), 219.
|
[14] |
P. L. García and J. Muñoz, On the geometrical structure of higher order variational calculus,, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 127.
|
[15] |
H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations,, Ann. Inst. Fourier (Grenoble), 23 (1973), 203.
doi: 10.5802/aif.451. |
[16] |
M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.
doi: 10.1063/1.523597. |
[17] |
X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order Lagrangian systems: Geometric-structures, dynamics and constraints,, J. Math. Phys., 32 (1991), 2744.
doi: 10.1063/1.529066. |
[18] |
X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order conditions for singular Lagrangian systems,, J. Phys. A: Math. Gen., 25 (1992), 1981. Google Scholar |
[19] |
O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.
doi: 10.1063/1.533411. |
[20] |
P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems,, J. Phys. A, 44 (2011).
doi: 10.1088/1751-8113/44/38/385203. |
[21] |
P. D. Prieto-Martínez and N. Román-Roy, Unified formalism for higher-order non-autonomous dynamical systems,, J. Math. Phys., 53 (2012).
doi: 10.1063/1.3692326. |
[22] |
D. J. Saunders, An alternative approach to the Cartan form in Lagrangian field theories,, J. Phys. A, 20 (1987), 339.
doi: 10.1088/0305-4470/20/2/019. |
[23] |
D. J. Saunders, The Geometry of Jet Bundles,, London Math. Soc., (1989).
doi: 10.1017/CBO9780511526411. |
[24] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T*Q \oplus TQ$,, J. Math. Phys., 24 (1983), 2589.
doi: 10.1063/1.525654. |
[25] |
L. Vitagliano, The Lagrangian-Hamiltonian formalism for higher-order field theories,, J. Geom. Phys., 60 (2010), 857.
doi: 10.1016/j.geomphys.2010.02.003. |
show all references
References:
[1] |
V. Aldaya and J. A. de Azcárraga, Variational principles on $r-th$ order jets of fibre bundles in field theory,, J. Math. Phys., 19 (1978), 1869.
doi: 10.1063/1.523904. |
[2] |
M. Barbero-Liñán, A. Echeverría-Enrí quez, D. Martín de Diego, M. C. Muñ oz-Lecanda and N. Román-Roy, Unified formalism for non-autonomous mechanical systems,, J. Math. Phys., 49 (2008). Google Scholar |
[3] |
M. Barbero-Liñán, A. Echeverría-Enrí quit, D. Martín de Diego, M. C. Muñoz-Lecanda and N. Román-Roy, Skinner-Rusk unified formalism for optimal control systems and applications,, J. Phys. A, 40 (2007), 12071.
doi: 10.1088/1751-8113/40/40/005. |
[4] |
C. M. Campos, M. de León, D. Martín de Diego and J. Vankerschaver, Unambigous formalism for higher-order Lagrangian field theories,, J. Phys. A, 42 (2009).
doi: 10.1088/1751-8113/42/47/475207. |
[5] |
F. Cantrijn, M. Crampin and W. Sarlet, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565.
doi: 10.1017/S0305004100064501. |
[6] |
L. Colombo, D. Marín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometric approach,, J. Math. Phys., 51 (2010).
doi: 10.1063/1.3456158. |
[7] |
J. Cortés, S. Martínez and F. Cantrijn, Skinner-Rusk approach to time-dependent mechanics,, Phys. Lett. A, 300 (2002), 250.
doi: 10.1016/S0375-9601(02)00777-6. |
[8] |
M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105.
doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N. |
[9] |
M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory,, North-Holland Math. Studies, (1985). Google Scholar |
[10] |
M. de León and P. R. Rodrigues, Higher-order almost tangent geometry and non-autonomous Lagrangian dynamics,, in Proc. Winter School on Geometry and Physics (Srní, (1987), 157. Google Scholar |
[11] |
A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007).
doi: 10.1063/1.2801875. |
[12] |
A. Echeverría-Enríquez, C. López, J. Marín-Solano, M. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for field theory,, J. Math. Phys., 45 (2004), 360.
doi: 10.1063/1.1628384. |
[13] |
P. L. García, The Poincaré-Cartan invariant in the calculus of variations,, in Symposia Mathematica, (1973), 219.
|
[14] |
P. L. García and J. Muñoz, On the geometrical structure of higher order variational calculus,, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 127.
|
[15] |
H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations,, Ann. Inst. Fourier (Grenoble), 23 (1973), 203.
doi: 10.5802/aif.451. |
[16] |
M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.
doi: 10.1063/1.523597. |
[17] |
X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order Lagrangian systems: Geometric-structures, dynamics and constraints,, J. Math. Phys., 32 (1991), 2744.
doi: 10.1063/1.529066. |
[18] |
X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order conditions for singular Lagrangian systems,, J. Phys. A: Math. Gen., 25 (1992), 1981. Google Scholar |
[19] |
O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.
doi: 10.1063/1.533411. |
[20] |
P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems,, J. Phys. A, 44 (2011).
doi: 10.1088/1751-8113/44/38/385203. |
[21] |
P. D. Prieto-Martínez and N. Román-Roy, Unified formalism for higher-order non-autonomous dynamical systems,, J. Math. Phys., 53 (2012).
doi: 10.1063/1.3692326. |
[22] |
D. J. Saunders, An alternative approach to the Cartan form in Lagrangian field theories,, J. Phys. A, 20 (1987), 339.
doi: 10.1088/0305-4470/20/2/019. |
[23] |
D. J. Saunders, The Geometry of Jet Bundles,, London Math. Soc., (1989).
doi: 10.1017/CBO9780511526411. |
[24] |
R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T*Q \oplus TQ$,, J. Math. Phys., 24 (1983), 2589.
doi: 10.1063/1.525654. |
[25] |
L. Vitagliano, The Lagrangian-Hamiltonian formalism for higher-order field theories,, J. Geom. Phys., 60 (2010), 857.
doi: 10.1016/j.geomphys.2010.02.003. |
[1] |
Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021018 |
[2] |
Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265 |
[3] |
Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033 |
[4] |
Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080 |
[5] |
Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020383 |
[6] |
Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242 |
[7] |
Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171 |
[8] |
Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020376 |
[9] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[10] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[11] |
Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115 |
[12] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
[13] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[14] |
Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025 |
[15] |
He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021 |
[16] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
[17] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[18] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[19] |
Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036 |
[20] |
Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]