December  2013, 5(4): 493-510. doi: 10.3934/jgm.2013.5.493

Higher-order mechanics: Variational principles and other topics

1. 

Departamento de Matemática Aplicada IV, Universitat Politècnica de Catalunya-BarcelonaTech, Campus Norte, Ed. C-3. C/ Jordi Girona 1, E-08034 Barcelona, Spain, Spain

Received  March 2013 Revised  March 2013 Published  December 2013

After reviewing the Lagrangian-Hamiltonian unified formalism (i.e, the Skinner-Rusk formalism) for higher-order (non-autonomous) dynamical systems, we state a unified geometrical version of the Variational Principles which allows us to derive the Lagrangian and Hamiltonian equations for these kinds of systems. Then, the standard Lagrangian and Hamiltonian formulations of these principles and the corresponding dynamical equations are recovered from this unified framework..
Citation: Pedro D. Prieto-Martínez, Narciso Román-Roy. Higher-order mechanics: Variational principles and other topics. Journal of Geometric Mechanics, 2013, 5 (4) : 493-510. doi: 10.3934/jgm.2013.5.493
References:
[1]

V. Aldaya and J. A. de Azcárraga, Variational principles on $r-th$ order jets of fibre bundles in field theory,, J. Math. Phys., 19 (1978), 1869.  doi: 10.1063/1.523904.  Google Scholar

[2]

M. Barbero-Liñán, A. Echeverría-Enrí quez, D. Martín de Diego, M. C. Muñ oz-Lecanda and N. Román-Roy, Unified formalism for non-autonomous mechanical systems,, J. Math. Phys., 49 (2008).   Google Scholar

[3]

M. Barbero-Liñán, A. Echeverría-Enrí quit, D. Martín de Diego, M. C. Muñoz-Lecanda and N. Román-Roy, Skinner-Rusk unified formalism for optimal control systems and applications,, J. Phys. A, 40 (2007), 12071.  doi: 10.1088/1751-8113/40/40/005.  Google Scholar

[4]

C. M. Campos, M. de León, D. Martín de Diego and J. Vankerschaver, Unambigous formalism for higher-order Lagrangian field theories,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/47/475207.  Google Scholar

[5]

F. Cantrijn, M. Crampin and W. Sarlet, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565.  doi: 10.1017/S0305004100064501.  Google Scholar

[6]

L. Colombo, D. Marín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometric approach,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3456158.  Google Scholar

[7]

J. Cortés, S. Martínez and F. Cantrijn, Skinner-Rusk approach to time-dependent mechanics,, Phys. Lett. A, 300 (2002), 250.  doi: 10.1016/S0375-9601(02)00777-6.  Google Scholar

[8]

M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105.  doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.  Google Scholar

[9]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory,, North-Holland Math. Studies, (1985).   Google Scholar

[10]

M. de León and P. R. Rodrigues, Higher-order almost tangent geometry and non-autonomous Lagrangian dynamics,, in Proc. Winter School on Geometry and Physics (Srní, (1987), 157.   Google Scholar

[11]

A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2801875.  Google Scholar

[12]

A. Echeverría-Enríquez, C. López, J. Marín-Solano, M. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for field theory,, J. Math. Phys., 45 (2004), 360.  doi: 10.1063/1.1628384.  Google Scholar

[13]

P. L. García, The Poincaré-Cartan invariant in the calculus of variations,, in Symposia Mathematica, (1973), 219.   Google Scholar

[14]

P. L. García and J. Muñoz, On the geometrical structure of higher order variational calculus,, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 127.   Google Scholar

[15]

H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations,, Ann. Inst. Fourier (Grenoble), 23 (1973), 203.  doi: 10.5802/aif.451.  Google Scholar

[16]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.  doi: 10.1063/1.523597.  Google Scholar

[17]

X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order Lagrangian systems: Geometric-structures, dynamics and constraints,, J. Math. Phys., 32 (1991), 2744.  doi: 10.1063/1.529066.  Google Scholar

[18]

X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order conditions for singular Lagrangian systems,, J. Phys. A: Math. Gen., 25 (1992), 1981.   Google Scholar

[19]

O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.  doi: 10.1063/1.533411.  Google Scholar

[20]

P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems,, J. Phys. A, 44 (2011).  doi: 10.1088/1751-8113/44/38/385203.  Google Scholar

[21]

P. D. Prieto-Martínez and N. Román-Roy, Unified formalism for higher-order non-autonomous dynamical systems,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.3692326.  Google Scholar

[22]

D. J. Saunders, An alternative approach to the Cartan form in Lagrangian field theories,, J. Phys. A, 20 (1987), 339.  doi: 10.1088/0305-4470/20/2/019.  Google Scholar

[23]

D. J. Saunders, The Geometry of Jet Bundles,, London Math. Soc., (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[24]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T*Q \oplus TQ$,, J. Math. Phys., 24 (1983), 2589.  doi: 10.1063/1.525654.  Google Scholar

[25]

L. Vitagliano, The Lagrangian-Hamiltonian formalism for higher-order field theories,, J. Geom. Phys., 60 (2010), 857.  doi: 10.1016/j.geomphys.2010.02.003.  Google Scholar

show all references

References:
[1]

V. Aldaya and J. A. de Azcárraga, Variational principles on $r-th$ order jets of fibre bundles in field theory,, J. Math. Phys., 19 (1978), 1869.  doi: 10.1063/1.523904.  Google Scholar

[2]

M. Barbero-Liñán, A. Echeverría-Enrí quez, D. Martín de Diego, M. C. Muñ oz-Lecanda and N. Román-Roy, Unified formalism for non-autonomous mechanical systems,, J. Math. Phys., 49 (2008).   Google Scholar

[3]

M. Barbero-Liñán, A. Echeverría-Enrí quit, D. Martín de Diego, M. C. Muñoz-Lecanda and N. Román-Roy, Skinner-Rusk unified formalism for optimal control systems and applications,, J. Phys. A, 40 (2007), 12071.  doi: 10.1088/1751-8113/40/40/005.  Google Scholar

[4]

C. M. Campos, M. de León, D. Martín de Diego and J. Vankerschaver, Unambigous formalism for higher-order Lagrangian field theories,, J. Phys. A, 42 (2009).  doi: 10.1088/1751-8113/42/47/475207.  Google Scholar

[5]

F. Cantrijn, M. Crampin and W. Sarlet, Higher-order differential equations and higher-order Lagrangian mechanics,, Math. Proc. Cambridge Philos. Soc., 99 (1986), 565.  doi: 10.1017/S0305004100064501.  Google Scholar

[6]

L. Colombo, D. Marín de Diego and M. Zuccalli, Optimal control of underactuated mechanical systems: A geometric approach,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3456158.  Google Scholar

[7]

J. Cortés, S. Martínez and F. Cantrijn, Skinner-Rusk approach to time-dependent mechanics,, Phys. Lett. A, 300 (2002), 250.  doi: 10.1016/S0375-9601(02)00777-6.  Google Scholar

[8]

M. de León, J. Marín-Solano, J. C. Marrero, M. C. Muñoz-Lecanda and N. Román-Roy, Singular Lagrangian systems on jet bundles,, Fortschr. Phys., 50 (2002), 105.  doi: 10.1002/1521-3978(200203)50:2<105::AID-PROP105>3.0.CO;2-N.  Google Scholar

[9]

M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory,, North-Holland Math. Studies, (1985).   Google Scholar

[10]

M. de León and P. R. Rodrigues, Higher-order almost tangent geometry and non-autonomous Lagrangian dynamics,, in Proc. Winter School on Geometry and Physics (Srní, (1987), 157.   Google Scholar

[11]

A. Echeverría-Enríquez, M. de León, M. C. Muñoz-Lecanda and N. Román-Roy, Extended Hamiltonian systems in multisymplectic field theories,, J. Math. Phys., 48 (2007).  doi: 10.1063/1.2801875.  Google Scholar

[12]

A. Echeverría-Enríquez, C. López, J. Marín-Solano, M. C. Muñoz-Lecanda and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for field theory,, J. Math. Phys., 45 (2004), 360.  doi: 10.1063/1.1628384.  Google Scholar

[13]

P. L. García, The Poincaré-Cartan invariant in the calculus of variations,, in Symposia Mathematica, (1973), 219.   Google Scholar

[14]

P. L. García and J. Muñoz, On the geometrical structure of higher order variational calculus,, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur., 117 (1983), 127.   Google Scholar

[15]

H. Goldschmidt and S. Sternberg, The Hamilton-Cartan formalism in the calculus of variations,, Ann. Inst. Fourier (Grenoble), 23 (1973), 203.  doi: 10.5802/aif.451.  Google Scholar

[16]

M. J. Gotay, J. M. Nester and G. Hinds, Presymplectic manifolds and the Dirac-Bergmann theory of constraints,, J. Math. Phys., 19 (1978), 2388.  doi: 10.1063/1.523597.  Google Scholar

[17]

X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order Lagrangian systems: Geometric-structures, dynamics and constraints,, J. Math. Phys., 32 (1991), 2744.  doi: 10.1063/1.529066.  Google Scholar

[18]

X. Gràcia, J. M. Pons and N. Román-Roy, Higher-order conditions for singular Lagrangian systems,, J. Phys. A: Math. Gen., 25 (1992), 1981.   Google Scholar

[19]

O. Krupková, Higher-order mechanical systems with constraints,, J. Math. Phys., 41 (2000), 5304.  doi: 10.1063/1.533411.  Google Scholar

[20]

P. D. Prieto-Martínez and N. Román-Roy, Lagrangian-Hamiltonian unified formalism for autonomous higher-order dynamical systems,, J. Phys. A, 44 (2011).  doi: 10.1088/1751-8113/44/38/385203.  Google Scholar

[21]

P. D. Prieto-Martínez and N. Román-Roy, Unified formalism for higher-order non-autonomous dynamical systems,, J. Math. Phys., 53 (2012).  doi: 10.1063/1.3692326.  Google Scholar

[22]

D. J. Saunders, An alternative approach to the Cartan form in Lagrangian field theories,, J. Phys. A, 20 (1987), 339.  doi: 10.1088/0305-4470/20/2/019.  Google Scholar

[23]

D. J. Saunders, The Geometry of Jet Bundles,, London Math. Soc., (1989).  doi: 10.1017/CBO9780511526411.  Google Scholar

[24]

R. Skinner and R. Rusk, Generalized Hamiltonian dynamics. I. Formulation on $T*Q \oplus TQ$,, J. Math. Phys., 24 (1983), 2589.  doi: 10.1063/1.525654.  Google Scholar

[25]

L. Vitagliano, The Lagrangian-Hamiltonian formalism for higher-order field theories,, J. Geom. Phys., 60 (2010), 857.  doi: 10.1016/j.geomphys.2010.02.003.  Google Scholar

[1]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[2]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[3]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[8]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[9]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[10]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[11]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[12]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

[13]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[14]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[15]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[16]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[17]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[18]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[19]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[20]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (6)

[Back to Top]