Citation: |
[1] |
M. Adler, On a trace functional for formal pseudo differential operators and the symplectic structure of the Korteweg-de-Vries type equations, Invent. Math., 50 (1978/79), 219-248. doi: 10.1007/BF01410079. |
[2] |
M. Atiyah, Convexity and commuting Hamiltonians, Bull. London Math. Soc., 14 (1982), 1-15.doi: 10.1112/blms/14.1.1. |
[3] |
M. J. Ablowitz, D. J. Kaup, A. C. Newell and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), 249-315. |
[4] |
R. Abraham and J. Marsden, Foundations of Mechanics, Second edition, Addison-Wesley, Redwood City, CA, 1987. |
[5] |
R. Beals, P. Deift and C. Tomei, Direct and Inverse Scattering on the Line, Math. Surveys and Monographs, 28, AMS, Providence, RI, 1988. |
[6] |
A. M. Bloch, H. Flaschka and T. Ratiu, A convexity theorem for isospectral manifolds of Jacobi matrices in a compact Lie algebra, Duke Math. J., 61 (1990), 41-65.doi: 10.1215/S0012-7094-90-06103-4. |
[7] |
P. Deift, J. Demmel, L. C. Li and C. Tomei, The bidiagonal singular value decomposition and Hamiltonian mechanics, SIAM J. Num. Anal., 28 (1991), 1463-1516.doi: 10.1137/0728076. |
[8] |
P. Deift, L. C. Li, T. Nanda and C. Tomei, The Toda flow on a generic orbit is integrable, Comm. Pure Appl. Math., 39 (1986), 183-232.doi: 10.1002/cpa.3160390203. |
[9] |
P. Deift, L. C. Li and C. Tomei, Matrix factorizations and integrable systems, Comm. Pure Appl. Math., 42 (1989), 443-521.doi: 10.1002/cpa.3160420405. |
[10] |
P. Deift, L. C. Li and C. Tomei, Loop groups, discrete versions of some classical integrable systems, and rank 2 extensions, Memoirs of the Amer. Math. Soc., 100 (1992).doi: 10.1090/memo/0479. |
[11] |
P. Deift, L. C. Li and C. Tomei, Toda flows with infinitely many variables, J. Funct. Anal., 64 (1985), 358-402.doi: 10.1016/0022-1236(85)90065-5. |
[12] |
P. Deift, T. Nanda and C. Tomei, Ordinary differential equations for the symmetric eigenvalue problem, SIAM J. Num. Anal., 20 (1983), 1-22.doi: 10.1137/0720001. |
[13] |
P. Deift, S. Rivera, C. Tomei and D. Watkins, A monotonicity property for Toda-type flows, SIAM J. of Matrix Anal. and Appl., 12 (1991), 463-468.doi: 10.1137/0612033. |
[14] |
J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.doi: 10.1137/1.9781611971446. |
[15] |
J. W. Demmel and W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Stat. Comput., 11 (1990), 873-912.doi: 10.1137/0911052. |
[16] |
H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B (3), 9 (1974), 1924-1925.doi: 10.1103/PhysRevB.9.1924. |
[17] |
D. Fried, The cohomology of an isospectral flow, Proc. Amer. Math. Soc., 98 (1986), 363-368.doi: 10.1090/S0002-9939-1986-0854048-6. |
[18] |
L. Feher and I. Tsutsui, Regularization of Toda lattices by Hamiltonian reduction, Jour. Geom. Phys., 21 (1997), 97-135.doi: 10.1016/S0393-0440(96)00010-1. |
[19] |
C. S. Gardner, J. M. Greene, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg-de Vries equation, Phys. Rev. Letter., 19 (1967), 1095-1097. |
[20] |
V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984. |
[21] |
T. Kapeller and J. Pöschel, KdV & KAM, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics], 45, Springer-Verlag, Berlin, 2003. |
[22] |
B. Kostant, Quantization and representation theory, in Representation Theory of Lie Groups (ed. M. Atiyah), SRC/LMS Res. Symp. Oxford 1977, LMS Lecture Notes Series, 34, Cambridge, 1979, 287-316. |
[23] |
Y. Kodama and B. Shipman, The finite non-periodic toda lattice: A geometric and topological viewpoint, arXiv:0805.1389v1, 2008. |
[24] |
I. M. Krichever, Methods of algebraic geometry in the theory of nonlinear equations, Russ. Math. Surv., 32 (1977), 185-213. |
[25] |
I. M. Krichever and S. P. Novikov, Holomorphich bundles over algebraic curves and nonlinear equations, Russ. Math. Surv., 35 (1980), 53-79. |
[26] |
P. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), 467-490.doi: 10.1002/cpa.3160210503. |
[27] |
R. S. Leite, T. R. W. Richa and C. Tomei, Geometric proofs of some theorems of Schur-Horn type, Lin. Alg. Appl., 286 (1999), 149-173.doi: 10.1016/S0024-3795(98)10169-6. |
[28] |
R. S. Leite, N. C. Saldanha and C. Tomei, An atlas for tridiagonal isospectral manifolds, Lin. Alg. Appl., 429 (2008), 387-402.doi: 10.1016/j.laa.2008.03.001. |
[29] |
R. S. Leite, N. C. Saldanha and C. Tomei, The asymptotics of Wilkinson's shift: Loss of cubic convergence, Found. Comp. Math., 10 (2010), 15-36.doi: 10.1007/s10208-009-9047-3. |
[30] |
R. S. Leite, N. C. Saldanha and C. Tomei, Dynamics of the symmetric eigenvalue problem with shift strategies, Int. Math. Res. Notices, 2013 (2013), 4382-4412.doi: 10.1093/imrn/rns186. |
[31] |
R. S. Leite and C. Tomei, Parametrization by polytopes of intersections of orbits by conjugation, Lin. Alg. Appl., 361 (2003), 223-243.doi: 10.1016/S0024-3795(02)00463-9. |
[32] |
J. Moser, Finitely many points on the line under the influence of an exponential potential-an integrable system, in Dynamical Systems, Theory and Applications (Rencontres, Battelle Res. Inst., Seattle, Wash., 1974), Lecture Notes in Physics, 38, Springer-Verlag, Berlin, 1975, 467-497. |
[33] |
J. Moser and A. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials, Comm. Math. Phys., 139 (1991), 217-243.doi: 10.1007/BF02352494. |
[34] |
B. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall Series in Computational Mathematics, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1980. |
[35] |
A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras. Vol. I, Birkhäuser Verlag, Basel, 1990.doi: 10.1007/978-3-0348-9257-5. |
[36] |
J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Pure and Applied Mathematics, 130, Academic Press, Boston, MA, 1987. |
[37] |
S. N. M. Ruijsenaars, Relativistic Toda systems, Comm. Math. Phys., 133 (1990), 217-247.doi: 10.1007/BF02097366. |
[38] |
A. G. Reyman, M. A. Semenov-Tian-Shansky, Group-theoretical methods in the theory of finite-dimensional integrable-systems, in Dynamical Systems VII (eds. V. I. Arnold and S. P. Novikov), Encyclopedia of Mathematical Sciences, Vol. 16, Springer-Verlag, New York, 1994. |
[39] |
W. Symes, Hamiltonian group actions and integrable systems, Physica D, 1 (1980), 339-374.doi: 10.1016/0167-2789(80)90017-2. |
[40] |
W. Symes, The QR algorithm and scattering for the finite nonperiodic Toda lattice, Physica D, 4 (1981/82), 275-280. doi: 10.1016/0167-2789(82)90069-0. |
[41] |
N. C. Saldanha and C. Tomei, Manifolds of normal or symmetric matrices of given spectrum and envelope, in preparation. |
[42] |
M. Toda, Wave propagation in anharmonic lattices, J. Phys. Soc. Japan, 23 (1967), 501-506. |
[43] |
C. Tomei, The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J., 51 (1984), 981-996.doi: 10.1215/S0012-7094-84-05144-5. |
[44] |
L. N.Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.doi: 10.1137/1.9780898719574. |
[45] |
P. van Moerbeke, The spectrum of Jacobi matrices, Invent. Math., 37 (1976), 45-81.doi: 10.1007/BF01418827. |
[46] |
D. S. Watkins and L. Elsner, On Rutishauser's approach to self-similar flows, SIAM J. Matrix Anal. Appl., 11 (1990), 301-311.doi: 10.1137/0611020. |