March  2013, 5(1): 85-129. doi: 10.3934/jgm.2013.5.85

Vector fields with distributions and invariants of ODEs

1. 

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland, Poland

Received  July 2012 Revised  February 2013 Published  April 2013

We study dynamic pairs $(X,V)$ where $X$ is a vector field on a smooth manifold $M$ and $V\subset TM$ is a vector distribution, both satisfying certain regularity conditions. We construct basic invariants of such objects and solve the equivalence problem. In particular, we assign to $(X,V)$ a canonical connection and a canonical frame on a certain frame bundle. We compute the curvature and torsion. The results are applied to the problem of time scale preserving equivalence of ordinary differential equations and of Veronese webs. The framework of dynamic pairs $(X,V)$ is shown to include sprays, control-affine systems, mechanical control systems, Veronese webs and other structures.
Citation: BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85
References:
[1]

A. Agrachev, The curvature and hyperbolicity of Hamiltonian systems, Proceed. Steklov Math. Inst., 256 (2007), 26-46. doi: 10.1134/S0081543807010026.

[2]

A. Agrachev and R. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry, I. Regular extremals, J. Dynamical and Control Systems, 3 (1997), 343-389. doi: 10.1007/BF02463256.

[3]

A. Agrachev, N. Chtcherbakova and I. Zelenko, On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals, J. of Dynamical and Control Syst., 11 (2005), 297-327. doi: 10.1007/s10883-005-6581-4.

[4]

C. Boehmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation, J. Nonlinear Math. Phys., 17 (2010), 503-516. doi: 10.1142/S1402925110001100.

[5]

R. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory, Proc. Sympos. Pure Math., 53 (1991), 33-88.

[6]

I. Bucataru, Linear connections for systems of higher order differential equations, Houston Journal of Mathematics, 31 (2005), 315-332.

[7]

I. Bucataru, O. A. Constantinescu and M. F. Dahl, A geometric setting for systems of ordinary differential equations, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291-1327. doi: 10.1142/S0219887811005701.

[8]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems," Springer Verlag, New York, 2004.

[9]

E. Cartan, Sur les variétés a connexion projective, Bull. Soc. Math. France, 52 (1924), 205-241.

[10]

E. Cartan, Observations sur le mémoir précédent, Math. Z., 37 (1933), 619-622. doi: 10.1007/BF01474603.

[11]

S.-S. Chern, The geometry of the differential equation $y'''=F(x,y,y',y'')$, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111.

[12]

S.-S. Chern, Sur la géométrie d'un systéme d'équations différentialles du second ordre, Bull. Sci. Math. 63 (1939), 206-212.

[13]

S.-S. Chern, The geometry of higher path-spaces, Journal of the Chinese Mathematical Society, 2 (1940), 247-276.

[14]

M. Crampin, G. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics, J. Phys. A: Math. Gen., 17 (1984).

[15]

M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations, Ann. Inst. Henri Poincare, 65 (1996), 223-249.

[16]

M. Crampin and D. Saunders, On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant, Groups, geometry and physics, Monogr. Real Acad. Ci. Exact. Fs.-Qum. Nat. Zaragoza, 29 (2006), 79-92.

[17]

B. Doubrov, B. Komrakov and T. Morimoto, Equivalence of holonomic differential equations, Lobachevskii Journal of Math., 3 (1999), 39-71.

[18]

M. Dunajski and P. Tod, Paraconformal geometry of n-th order ODEs, and exotic holonomy in dimension four, J. Geom. Phys., 56 (2006), 1790-1809. doi: 10.1016/j.geomphys.2005.10.007.

[19]

M. E. Fels, The equivalence problem for systems of second order ordinary differential equations, Proc. London Math. Soc., 71 (1995), 221-240. doi: 10.1112/plms/s3-71.1.221.

[20]

R. V. Gamkrelidze (Ed.), "Geometry I," Encyclopaedia of Math. Sciences, 28, Springer-Verlag.

[21]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bi-Hamiltonian systems, Journal of Functional Analysis, 99 (1991), 150-178. doi: 10.1016/0022-1236(91)90057-C.

[22]

M. Godliński and P. Nurowski, $GL(2,R)$ geometry of ODEs, J. Geom. Phys., 60 (2010), 991-1027. doi: 10.1016/j.geomphys.2010.03.003.

[23]

J. Grifone, Structure presque-tangente et connexions I, Ann. Inst. Fourier, Grenoble, 22 (1972), 287-334.

[24]

B. Jakubczyk, Curvatures of single-input control systems, Control and Cybernetics, 38 (2009), 1375-1391.

[25]

B. Jakubczyk and W. Kryński, Relative curvatures of vector fields and their conjugate points, in preparation.

[26]

B. Jakubczyk and W. Kryński, Vector fields with distributions and invariants of ODEs. Preprint 728, Institute of Mathematics, Polish Academy of Sciences, Warsaw (2010).

[27]

S. Kobayashi, "Transformation Groups in Differential Geometry," Springer-Verlag, 1972.

[28]

D. Kosambi, System of differential equations of second order, Quart. J. Math. Oxford Ser., 6 (1935), 1-12.

[29]

D. Kosambi, Path spaces of higher order, Quart. J. Math. Oxford Ser., 7 (1936), 97-104.

[30]

W. Kryński, "Equivalence Problems for Tangent Distributions and Ordinary Differential Equations," PhD thesis, Institute of Mathematics, Polish Academy of Sciences, 2008 (in Polish).

[31]

W. Kryński, Paraconformal structures and differential equations, Differential Geometry and its Applications, 28 (2010), 523-531. doi: 10.1016/j.difgeo.2010.05.003.

[32]

W. Kryński, Geometry of isotypic Kronecker webs, Central European Journal of Mathematics, 10 (2012), 1872-1888. doi: 10.2478/s11533-012-0081-z.

[33]

T. Mestdag and M. Crampin, Involutive distributions and dynamical systems of second-order type, Diff. Geom. Appl., 29 (2011), 747-757. doi: 10.1016/j.difgeo.2011.08.003.

[34]

R. Miron, "The Geometry of Higher-Order Lagrange Spaces," Kluwer Academic Publishers, 1997.

[35]

W. Respondek and S. Ricardo, When is a control system mechanical?, J. Geometric Mechanics, 2 (2010), 265-302. doi: 10.3934/jgm.2010.2.265.

[36]

Z. Shen, "Lectures on Finsler Geometry," World Scientific, Singapore, 2001. doi: 10.1142/9789812811622.

[37]

S. Sternberg, "Lectures on Differential Geometry," Prentice-Hall, Englewood Cliffs, N. J., 1964.

[38]

F.-J. Turiel, $C^\infty$-equivalence entre tissus de Veronese et structures bihamiltoniennes, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 328 (1999), 891-894. doi: 10.1016/S0764-4442(99)80292-4.

[39]

F.-J. Turiel, $C^\infty$-classification des germes de tissus de Veronese, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 329 (1999), 425-428. doi: 10.1016/S0764-4442(00)88618-8.

[40]

E. Wilczynski, "Projective Differential Geometry of Curves and Rules Surfaces," Teubner, 1906.

[41]

T. Yajima and H. Nagahama, KCC-theory and geometry of the Rikitake system, Journal of Physics A - Mathematical and Theoretical, 40 (2007), 2755-2772. doi: 10.1088/1751-8113/40/11/011.

[42]

I. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation, Transform. Groups, 6 (2001), 267-300. doi: 10.1007/BF01263093.

show all references

References:
[1]

A. Agrachev, The curvature and hyperbolicity of Hamiltonian systems, Proceed. Steklov Math. Inst., 256 (2007), 26-46. doi: 10.1134/S0081543807010026.

[2]

A. Agrachev and R. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry, I. Regular extremals, J. Dynamical and Control Systems, 3 (1997), 343-389. doi: 10.1007/BF02463256.

[3]

A. Agrachev, N. Chtcherbakova and I. Zelenko, On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals, J. of Dynamical and Control Syst., 11 (2005), 297-327. doi: 10.1007/s10883-005-6581-4.

[4]

C. Boehmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation, J. Nonlinear Math. Phys., 17 (2010), 503-516. doi: 10.1142/S1402925110001100.

[5]

R. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory, Proc. Sympos. Pure Math., 53 (1991), 33-88.

[6]

I. Bucataru, Linear connections for systems of higher order differential equations, Houston Journal of Mathematics, 31 (2005), 315-332.

[7]

I. Bucataru, O. A. Constantinescu and M. F. Dahl, A geometric setting for systems of ordinary differential equations, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291-1327. doi: 10.1142/S0219887811005701.

[8]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems," Springer Verlag, New York, 2004.

[9]

E. Cartan, Sur les variétés a connexion projective, Bull. Soc. Math. France, 52 (1924), 205-241.

[10]

E. Cartan, Observations sur le mémoir précédent, Math. Z., 37 (1933), 619-622. doi: 10.1007/BF01474603.

[11]

S.-S. Chern, The geometry of the differential equation $y'''=F(x,y,y',y'')$, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97-111.

[12]

S.-S. Chern, Sur la géométrie d'un systéme d'équations différentialles du second ordre, Bull. Sci. Math. 63 (1939), 206-212.

[13]

S.-S. Chern, The geometry of higher path-spaces, Journal of the Chinese Mathematical Society, 2 (1940), 247-276.

[14]

M. Crampin, G. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics, J. Phys. A: Math. Gen., 17 (1984).

[15]

M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations, Ann. Inst. Henri Poincare, 65 (1996), 223-249.

[16]

M. Crampin and D. Saunders, On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant, Groups, geometry and physics, Monogr. Real Acad. Ci. Exact. Fs.-Qum. Nat. Zaragoza, 29 (2006), 79-92.

[17]

B. Doubrov, B. Komrakov and T. Morimoto, Equivalence of holonomic differential equations, Lobachevskii Journal of Math., 3 (1999), 39-71.

[18]

M. Dunajski and P. Tod, Paraconformal geometry of n-th order ODEs, and exotic holonomy in dimension four, J. Geom. Phys., 56 (2006), 1790-1809. doi: 10.1016/j.geomphys.2005.10.007.

[19]

M. E. Fels, The equivalence problem for systems of second order ordinary differential equations, Proc. London Math. Soc., 71 (1995), 221-240. doi: 10.1112/plms/s3-71.1.221.

[20]

R. V. Gamkrelidze (Ed.), "Geometry I," Encyclopaedia of Math. Sciences, 28, Springer-Verlag.

[21]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bi-Hamiltonian systems, Journal of Functional Analysis, 99 (1991), 150-178. doi: 10.1016/0022-1236(91)90057-C.

[22]

M. Godliński and P. Nurowski, $GL(2,R)$ geometry of ODEs, J. Geom. Phys., 60 (2010), 991-1027. doi: 10.1016/j.geomphys.2010.03.003.

[23]

J. Grifone, Structure presque-tangente et connexions I, Ann. Inst. Fourier, Grenoble, 22 (1972), 287-334.

[24]

B. Jakubczyk, Curvatures of single-input control systems, Control and Cybernetics, 38 (2009), 1375-1391.

[25]

B. Jakubczyk and W. Kryński, Relative curvatures of vector fields and their conjugate points, in preparation.

[26]

B. Jakubczyk and W. Kryński, Vector fields with distributions and invariants of ODEs. Preprint 728, Institute of Mathematics, Polish Academy of Sciences, Warsaw (2010).

[27]

S. Kobayashi, "Transformation Groups in Differential Geometry," Springer-Verlag, 1972.

[28]

D. Kosambi, System of differential equations of second order, Quart. J. Math. Oxford Ser., 6 (1935), 1-12.

[29]

D. Kosambi, Path spaces of higher order, Quart. J. Math. Oxford Ser., 7 (1936), 97-104.

[30]

W. Kryński, "Equivalence Problems for Tangent Distributions and Ordinary Differential Equations," PhD thesis, Institute of Mathematics, Polish Academy of Sciences, 2008 (in Polish).

[31]

W. Kryński, Paraconformal structures and differential equations, Differential Geometry and its Applications, 28 (2010), 523-531. doi: 10.1016/j.difgeo.2010.05.003.

[32]

W. Kryński, Geometry of isotypic Kronecker webs, Central European Journal of Mathematics, 10 (2012), 1872-1888. doi: 10.2478/s11533-012-0081-z.

[33]

T. Mestdag and M. Crampin, Involutive distributions and dynamical systems of second-order type, Diff. Geom. Appl., 29 (2011), 747-757. doi: 10.1016/j.difgeo.2011.08.003.

[34]

R. Miron, "The Geometry of Higher-Order Lagrange Spaces," Kluwer Academic Publishers, 1997.

[35]

W. Respondek and S. Ricardo, When is a control system mechanical?, J. Geometric Mechanics, 2 (2010), 265-302. doi: 10.3934/jgm.2010.2.265.

[36]

Z. Shen, "Lectures on Finsler Geometry," World Scientific, Singapore, 2001. doi: 10.1142/9789812811622.

[37]

S. Sternberg, "Lectures on Differential Geometry," Prentice-Hall, Englewood Cliffs, N. J., 1964.

[38]

F.-J. Turiel, $C^\infty$-equivalence entre tissus de Veronese et structures bihamiltoniennes, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 328 (1999), 891-894. doi: 10.1016/S0764-4442(99)80292-4.

[39]

F.-J. Turiel, $C^\infty$-classification des germes de tissus de Veronese, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 329 (1999), 425-428. doi: 10.1016/S0764-4442(00)88618-8.

[40]

E. Wilczynski, "Projective Differential Geometry of Curves and Rules Surfaces," Teubner, 1906.

[41]

T. Yajima and H. Nagahama, KCC-theory and geometry of the Rikitake system, Journal of Physics A - Mathematical and Theoretical, 40 (2007), 2755-2772. doi: 10.1088/1751-8113/40/11/011.

[42]

I. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation, Transform. Groups, 6 (2001), 267-300. doi: 10.1007/BF01263093.

[1]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[2]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[3]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[4]

Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial and Management Optimization, 2020, 16 (3) : 1481-1502. doi: 10.3934/jimo.2019012

[5]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[6]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[7]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[8]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[9]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475

[10]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Electronic Research Announcements, 1997, 3: 126-130.

[11]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[12]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[13]

Wensheng Yin, Jinde Cao, Guoqiang Zheng. Further results on stabilization of stochastic differential equations with delayed feedback control under $ G $-expectation framework. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 883-901. doi: 10.3934/dcdsb.2021072

[14]

Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057

[15]

Xinping Zhou, Yong Li, Xiaomeng Jiang. Periodic solutions in distribution of stochastic lattice differential equations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022123

[16]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[17]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[18]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[19]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[20]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control and Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

2021 Impact Factor: 0.737

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]