March  2013, 5(1): 85-129. doi: 10.3934/jgm.2013.5.85

Vector fields with distributions and invariants of ODEs

1. 

Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-956 Warszawa, Poland, Poland

Received  July 2012 Revised  February 2013 Published  April 2013

We study dynamic pairs $(X,V)$ where $X$ is a vector field on a smooth manifold $M$ and $V\subset TM$ is a vector distribution, both satisfying certain regularity conditions. We construct basic invariants of such objects and solve the equivalence problem. In particular, we assign to $(X,V)$ a canonical connection and a canonical frame on a certain frame bundle. We compute the curvature and torsion. The results are applied to the problem of time scale preserving equivalence of ordinary differential equations and of Veronese webs. The framework of dynamic pairs $(X,V)$ is shown to include sprays, control-affine systems, mechanical control systems, Veronese webs and other structures.
Citation: BronisŁaw Jakubczyk, Wojciech Kryński. Vector fields with distributions and invariants of ODEs. Journal of Geometric Mechanics, 2013, 5 (1) : 85-129. doi: 10.3934/jgm.2013.5.85
References:
[1]

A. Agrachev, The curvature and hyperbolicity of Hamiltonian systems,, Proceed. Steklov Math. Inst., 256 (2007), 26.  doi: 10.1134/S0081543807010026.  Google Scholar

[2]

A. Agrachev and R. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry, I. Regular extremals,, J. Dynamical and Control Systems, 3 (1997), 343.  doi: 10.1007/BF02463256.  Google Scholar

[3]

A. Agrachev, N. Chtcherbakova and I. Zelenko, On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals,, J. of Dynamical and Control Syst., 11 (2005), 297.  doi: 10.1007/s10883-005-6581-4.  Google Scholar

[4]

C. Boehmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation,, J. Nonlinear Math. Phys., 17 (2010), 503.  doi: 10.1142/S1402925110001100.  Google Scholar

[5]

R. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory,, Proc. Sympos. Pure Math., 53 (1991), 33.   Google Scholar

[6]

I. Bucataru, Linear connections for systems of higher order differential equations,, Houston Journal of Mathematics, 31 (2005), 315.   Google Scholar

[7]

I. Bucataru, O. A. Constantinescu and M. F. Dahl, A geometric setting for systems of ordinary differential equations,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291.  doi: 10.1142/S0219887811005701.  Google Scholar

[8]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems,", Springer Verlag, (2004).   Google Scholar

[9]

E. Cartan, Sur les variétés a connexion projective,, Bull. Soc. Math. France, 52 (1924), 205.   Google Scholar

[10]

E. Cartan, Observations sur le mémoir précédent,, Math. Z., 37 (1933), 619.  doi: 10.1007/BF01474603.  Google Scholar

[11]

S.-S. Chern, The geometry of the differential equation $y'''=F(x,y,y',y'')$,, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97.   Google Scholar

[12]

S.-S. Chern, Sur la géométrie d'un systéme d'équations différentialles du second ordre,, Bull. Sci. Math. 63 (1939), 63 (1939), 206.   Google Scholar

[13]

S.-S. Chern, The geometry of higher path-spaces,, Journal of the Chinese Mathematical Society, 2 (1940), 247.   Google Scholar

[14]

M. Crampin, G. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics,, J. Phys. A: Math. Gen., 17 (1984).   Google Scholar

[15]

M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations,, Ann. Inst. Henri Poincare, 65 (1996), 223.   Google Scholar

[16]

M. Crampin and D. Saunders, On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant,, Groups, 29 (2006), 79.   Google Scholar

[17]

B. Doubrov, B. Komrakov and T. Morimoto, Equivalence of holonomic differential equations,, Lobachevskii Journal of Math., 3 (1999), 39.   Google Scholar

[18]

M. Dunajski and P. Tod, Paraconformal geometry of n-th order ODEs, and exotic holonomy in dimension four,, J. Geom. Phys., 56 (2006), 1790.  doi: 10.1016/j.geomphys.2005.10.007.  Google Scholar

[19]

M. E. Fels, The equivalence problem for systems of second order ordinary differential equations,, Proc. London Math. Soc., 71 (1995), 221.  doi: 10.1112/plms/s3-71.1.221.  Google Scholar

[20]

R. V. Gamkrelidze (Ed.), "Geometry I,", Encyclopaedia of Math. Sciences, 28 ().   Google Scholar

[21]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bi-Hamiltonian systems,, Journal of Functional Analysis, 99 (1991), 150.  doi: 10.1016/0022-1236(91)90057-C.  Google Scholar

[22]

M. Godliński and P. Nurowski, $GL(2,R)$ geometry of ODEs,, J. Geom. Phys., 60 (2010), 991.  doi: 10.1016/j.geomphys.2010.03.003.  Google Scholar

[23]

J. Grifone, Structure presque-tangente et connexions I,, Ann. Inst. Fourier, 22 (1972), 287.   Google Scholar

[24]

B. Jakubczyk, Curvatures of single-input control systems,, Control and Cybernetics, 38 (2009), 1375.   Google Scholar

[25]

B. Jakubczyk and W. Kryński, Relative curvatures of vector fields and their conjugate points,, in preparation., ().   Google Scholar

[26]

B. Jakubczyk and W. Kryński, Vector fields with distributions and invariants of ODEs., Preprint 728, (2010).   Google Scholar

[27]

S. Kobayashi, "Transformation Groups in Differential Geometry,", Springer-Verlag, (1972).   Google Scholar

[28]

D. Kosambi, System of differential equations of second order,, Quart. J. Math. Oxford Ser., 6 (1935), 1.   Google Scholar

[29]

D. Kosambi, Path spaces of higher order,, Quart. J. Math. Oxford Ser., 7 (1936), 97.   Google Scholar

[30]

W. Kryński, "Equivalence Problems for Tangent Distributions and Ordinary Differential Equations,", PhD thesis, (2008).   Google Scholar

[31]

W. Kryński, Paraconformal structures and differential equations,, Differential Geometry and its Applications, 28 (2010), 523.  doi: 10.1016/j.difgeo.2010.05.003.  Google Scholar

[32]

W. Kryński, Geometry of isotypic Kronecker webs,, Central European Journal of Mathematics, 10 (2012), 1872.  doi: 10.2478/s11533-012-0081-z.  Google Scholar

[33]

T. Mestdag and M. Crampin, Involutive distributions and dynamical systems of second-order type,, Diff. Geom. Appl., 29 (2011), 747.  doi: 10.1016/j.difgeo.2011.08.003.  Google Scholar

[34]

R. Miron, "The Geometry of Higher-Order Lagrange Spaces,", Kluwer Academic Publishers, (1997).   Google Scholar

[35]

W. Respondek and S. Ricardo, When is a control system mechanical?,, J. Geometric Mechanics, 2 (2010), 265.  doi: 10.3934/jgm.2010.2.265.  Google Scholar

[36]

Z. Shen, "Lectures on Finsler Geometry,", World Scientific, (2001).  doi: 10.1142/9789812811622.  Google Scholar

[37]

S. Sternberg, "Lectures on Differential Geometry,", Prentice-Hall, (1964).   Google Scholar

[38]

F.-J. Turiel, $C^\infty$-equivalence entre tissus de Veronese et structures bihamiltoniennes,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 328 (1999), 891.  doi: 10.1016/S0764-4442(99)80292-4.  Google Scholar

[39]

F.-J. Turiel, $C^\infty$-classification des germes de tissus de Veronese,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 329 (1999), 425.  doi: 10.1016/S0764-4442(00)88618-8.  Google Scholar

[40]

E. Wilczynski, "Projective Differential Geometry of Curves and Rules Surfaces,", Teubner, (1906).   Google Scholar

[41]

T. Yajima and H. Nagahama, KCC-theory and geometry of the Rikitake system,, Journal of Physics A - Mathematical and Theoretical, 40 (2007), 2755.  doi: 10.1088/1751-8113/40/11/011.  Google Scholar

[42]

I. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation,, Transform. Groups, 6 (2001), 267.  doi: 10.1007/BF01263093.  Google Scholar

show all references

References:
[1]

A. Agrachev, The curvature and hyperbolicity of Hamiltonian systems,, Proceed. Steklov Math. Inst., 256 (2007), 26.  doi: 10.1134/S0081543807010026.  Google Scholar

[2]

A. Agrachev and R. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry, I. Regular extremals,, J. Dynamical and Control Systems, 3 (1997), 343.  doi: 10.1007/BF02463256.  Google Scholar

[3]

A. Agrachev, N. Chtcherbakova and I. Zelenko, On curvatures and focal points of dynamical Lagrangian distributions and their reductions by first integrals,, J. of Dynamical and Control Syst., 11 (2005), 297.  doi: 10.1007/s10883-005-6581-4.  Google Scholar

[4]

C. Boehmer and T. Harko, Nonlinear stability analysis of the Emden-Fowler equation,, J. Nonlinear Math. Phys., 17 (2010), 503.  doi: 10.1142/S1402925110001100.  Google Scholar

[5]

R. Bryant, Two exotic holonomies in dimension four, path geometries, and twistor theory,, Proc. Sympos. Pure Math., 53 (1991), 33.   Google Scholar

[6]

I. Bucataru, Linear connections for systems of higher order differential equations,, Houston Journal of Mathematics, 31 (2005), 315.   Google Scholar

[7]

I. Bucataru, O. A. Constantinescu and M. F. Dahl, A geometric setting for systems of ordinary differential equations,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1291.  doi: 10.1142/S0219887811005701.  Google Scholar

[8]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems,", Springer Verlag, (2004).   Google Scholar

[9]

E. Cartan, Sur les variétés a connexion projective,, Bull. Soc. Math. France, 52 (1924), 205.   Google Scholar

[10]

E. Cartan, Observations sur le mémoir précédent,, Math. Z., 37 (1933), 619.  doi: 10.1007/BF01474603.  Google Scholar

[11]

S.-S. Chern, The geometry of the differential equation $y'''=F(x,y,y',y'')$,, Sci. Rep. Nat. Tsing Hua Univ., 4 (1940), 97.   Google Scholar

[12]

S.-S. Chern, Sur la géométrie d'un systéme d'équations différentialles du second ordre,, Bull. Sci. Math. 63 (1939), 63 (1939), 206.   Google Scholar

[13]

S.-S. Chern, The geometry of higher path-spaces,, Journal of the Chinese Mathematical Society, 2 (1940), 247.   Google Scholar

[14]

M. Crampin, G. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics,, J. Phys. A: Math. Gen., 17 (1984).   Google Scholar

[15]

M. Crampin, E. Martinez and W. Sarlet, Linear connections for systems of second-order ordinary differential equations,, Ann. Inst. Henri Poincare, 65 (1996), 223.   Google Scholar

[16]

M. Crampin and D. Saunders, On the geometry of higher-order ordinary differential equations and the Wuenschmann invariant,, Groups, 29 (2006), 79.   Google Scholar

[17]

B. Doubrov, B. Komrakov and T. Morimoto, Equivalence of holonomic differential equations,, Lobachevskii Journal of Math., 3 (1999), 39.   Google Scholar

[18]

M. Dunajski and P. Tod, Paraconformal geometry of n-th order ODEs, and exotic holonomy in dimension four,, J. Geom. Phys., 56 (2006), 1790.  doi: 10.1016/j.geomphys.2005.10.007.  Google Scholar

[19]

M. E. Fels, The equivalence problem for systems of second order ordinary differential equations,, Proc. London Math. Soc., 71 (1995), 221.  doi: 10.1112/plms/s3-71.1.221.  Google Scholar

[20]

R. V. Gamkrelidze (Ed.), "Geometry I,", Encyclopaedia of Math. Sciences, 28 ().   Google Scholar

[21]

I. M. Gelfand and I. Zakharevich, Webs, Veronese curves, and bi-Hamiltonian systems,, Journal of Functional Analysis, 99 (1991), 150.  doi: 10.1016/0022-1236(91)90057-C.  Google Scholar

[22]

M. Godliński and P. Nurowski, $GL(2,R)$ geometry of ODEs,, J. Geom. Phys., 60 (2010), 991.  doi: 10.1016/j.geomphys.2010.03.003.  Google Scholar

[23]

J. Grifone, Structure presque-tangente et connexions I,, Ann. Inst. Fourier, 22 (1972), 287.   Google Scholar

[24]

B. Jakubczyk, Curvatures of single-input control systems,, Control and Cybernetics, 38 (2009), 1375.   Google Scholar

[25]

B. Jakubczyk and W. Kryński, Relative curvatures of vector fields and their conjugate points,, in preparation., ().   Google Scholar

[26]

B. Jakubczyk and W. Kryński, Vector fields with distributions and invariants of ODEs., Preprint 728, (2010).   Google Scholar

[27]

S. Kobayashi, "Transformation Groups in Differential Geometry,", Springer-Verlag, (1972).   Google Scholar

[28]

D. Kosambi, System of differential equations of second order,, Quart. J. Math. Oxford Ser., 6 (1935), 1.   Google Scholar

[29]

D. Kosambi, Path spaces of higher order,, Quart. J. Math. Oxford Ser., 7 (1936), 97.   Google Scholar

[30]

W. Kryński, "Equivalence Problems for Tangent Distributions and Ordinary Differential Equations,", PhD thesis, (2008).   Google Scholar

[31]

W. Kryński, Paraconformal structures and differential equations,, Differential Geometry and its Applications, 28 (2010), 523.  doi: 10.1016/j.difgeo.2010.05.003.  Google Scholar

[32]

W. Kryński, Geometry of isotypic Kronecker webs,, Central European Journal of Mathematics, 10 (2012), 1872.  doi: 10.2478/s11533-012-0081-z.  Google Scholar

[33]

T. Mestdag and M. Crampin, Involutive distributions and dynamical systems of second-order type,, Diff. Geom. Appl., 29 (2011), 747.  doi: 10.1016/j.difgeo.2011.08.003.  Google Scholar

[34]

R. Miron, "The Geometry of Higher-Order Lagrange Spaces,", Kluwer Academic Publishers, (1997).   Google Scholar

[35]

W. Respondek and S. Ricardo, When is a control system mechanical?,, J. Geometric Mechanics, 2 (2010), 265.  doi: 10.3934/jgm.2010.2.265.  Google Scholar

[36]

Z. Shen, "Lectures on Finsler Geometry,", World Scientific, (2001).  doi: 10.1142/9789812811622.  Google Scholar

[37]

S. Sternberg, "Lectures on Differential Geometry,", Prentice-Hall, (1964).   Google Scholar

[38]

F.-J. Turiel, $C^\infty$-equivalence entre tissus de Veronese et structures bihamiltoniennes,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 328 (1999), 891.  doi: 10.1016/S0764-4442(99)80292-4.  Google Scholar

[39]

F.-J. Turiel, $C^\infty$-classification des germes de tissus de Veronese,, Comptes Rendus de l'Acad. des Sciences. Ser. I. Math., 329 (1999), 425.  doi: 10.1016/S0764-4442(00)88618-8.  Google Scholar

[40]

E. Wilczynski, "Projective Differential Geometry of Curves and Rules Surfaces,", Teubner, (1906).   Google Scholar

[41]

T. Yajima and H. Nagahama, KCC-theory and geometry of the Rikitake system,, Journal of Physics A - Mathematical and Theoretical, 40 (2007), 2755.  doi: 10.1088/1751-8113/40/11/011.  Google Scholar

[42]

I. Zakharevich, Kronecker webs, bihamiltonian structures, and the method of argument translation,, Transform. Groups, 6 (2001), 267.  doi: 10.1007/BF01263093.  Google Scholar

[1]

Yves Achdou, Mathieu Laurière. On the system of partial differential equations arising in mean field type control. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3879-3900. doi: 10.3934/dcds.2015.35.3879

[2]

Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control & Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036

[3]

Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071

[4]

Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019012

[5]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[6]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[7]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[8]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 475-484. doi: 10.3934/dcds.1998.4.475

[9]

Michael C. Sullivan. Invariants of twist-wise flow equivalence. Electronic Research Announcements, 1997, 3: 126-130.

[10]

Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete & Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365

[11]

Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709

[12]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[13]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[14]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[15]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[16]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[17]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[18]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

[19]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[20]

Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control & Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]