March  2014, 6(1): 121-140. doi: 10.3934/jgm.2014.6.121

A Hamilton-Jacobi theory on Poisson manifolds

1. 

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), c\ Nicolás Cabrera, n 13-15, Campus Cantoblanco, UAM, 28049 Madrid, Spain, Spain, Spain

Received  November 2012 Revised  January 2014 Published  April 2014

In this paper we develop a Hamilton-Jacobi theory in the setting of almost Poisson manifolds. The theory extends the classical Hamilton-Jacobi theory and can be also applied to very general situations including nonholonomic mechanical systems and time dependent systems with external forces.
Citation: Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed., Benjamin-Cummings, Reading (Ma), 1978.  Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.  Google Scholar

[3]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics: Hamilton-Jacobi equation and applications, Nonlinearity, 23 (2010), 1887-1918. doi: 10.1088/0951-7715/23/8/006.  Google Scholar

[4]

L. Bates and J. Sniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115. doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[5]

F. Cantrijn, Vector fields generating invariants for classical dissipative systems, J. Math. Phys., 23 (1982), 1589-1595. doi: 10.1063/1.525569.  Google Scholar

[6]

F. Cantrijn, M. de León and D. Martín de Diego, On almost-Poisson structures in nonholonomic mechanics, Nonlinearity, 12 (1999), 721-737. doi: 10.1088/0951-7715/12/3/316.  Google Scholar

[7]

J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 1417-1458. doi: 10.1142/S0219887806001764.  Google Scholar

[8]

J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 431-454. doi: 10.1142/S0219887810004385.  Google Scholar

[9]

C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris, 1969.  Google Scholar

[10]

M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints, Journal of Mathematical Physics, 53 (2012), 072905 (29 pages). doi: 10.1063/1.4736733.  Google Scholar

[11]

M. de León, D. Iglesias-Ponte and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, Journal of Physics A: Math. Gen., 41 (2008), 015205, 14 pp. doi: 10.1088/1751-8113/41/1/015205.  Google Scholar

[12]

M. de León, J. C. Marrero and D. Martín de Diego, A geometric Hamilton-Jacobi theory for classical field theories, In: Variations, geometry and physics, 129-140, Nova Sci. Publ., New York, (2009).  Google Scholar

[13]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198. doi: 10.3934/jgm.2010.2.159.  Google Scholar

[14]

M. de León, D. Martín de Diego, J. C. Marrero, M. Salgado and S. Vilariño, Hamilton-Jacobi theory in $k$-symplectic field theories, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 1491-1507. doi: 10.1142/S0219887810004919.  Google Scholar

[15]

M. de León, J. C. Marrero, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems, J. Math. Phys., 54 (2013), 032902, 32 pp. doi: 10.1063/1.4796088.  Google Scholar

[16]

M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems in the Skinner and Rusk setting, Int. J. Geom. Meth. Mod. Phys., 9 (2012), 1250074, 24 pp. doi: 10.1142/S0219887812500740.  Google Scholar

[17]

M. de León, D. Martín de Diego, C. Martínez-Campos and M. Vaquero, A Hamilton-Jacobi theory in infinite dimensional phase spaces,, In preparation., ().   Google Scholar

[18]

M. de León and P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[19]

P. Libermann and Ch.M- Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[20]

J. C. Marrero and D. Sosa, The Hamilton-Jacobi equation on Lie affgebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 605-622. doi: 10.1142/S0219887806001284.  Google Scholar

[21]

T. Oshawa and A. M. Bloch, Nonholonomic Hamilton-Jacobi equations and integrability, J. Geom. Mech., 1 (2009), 461-481. doi: 10.3934/jgm.2009.1.461.  Google Scholar

[22]

H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Hazell, Watson and Viney Ltd., Aylesbury, Buckinghamshire, U.K. 1966. Google Scholar

[23]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118. Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8495-2.  Google Scholar

[24]

A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233. doi: 10.1016/0034-4877(94)90038-8.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd ed., Benjamin-Cummings, Reading (Ma), 1978.  Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics, Second edition. Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989.  Google Scholar

[3]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics: Hamilton-Jacobi equation and applications, Nonlinearity, 23 (2010), 1887-1918. doi: 10.1088/0951-7715/23/8/006.  Google Scholar

[4]

L. Bates and J. Sniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115. doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[5]

F. Cantrijn, Vector fields generating invariants for classical dissipative systems, J. Math. Phys., 23 (1982), 1589-1595. doi: 10.1063/1.525569.  Google Scholar

[6]

F. Cantrijn, M. de León and D. Martín de Diego, On almost-Poisson structures in nonholonomic mechanics, Nonlinearity, 12 (1999), 721-737. doi: 10.1088/0951-7715/12/3/316.  Google Scholar

[7]

J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 1417-1458. doi: 10.1142/S0219887806001764.  Google Scholar

[8]

J. F. Cariñena, X. Gracia, G. Marmo, E. Martínez, M. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 431-454. doi: 10.1142/S0219887810004385.  Google Scholar

[9]

C. Godbillon, Géométrie Différentielle et Mécanique Analytique, Hermann, Paris, 1969.  Google Scholar

[10]

M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi Theory for Degenerate Lagrangian Systems with Holonomic and Nonholonomic Constraints, Journal of Mathematical Physics, 53 (2012), 072905 (29 pages). doi: 10.1063/1.4736733.  Google Scholar

[11]

M. de León, D. Iglesias-Ponte and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, Journal of Physics A: Math. Gen., 41 (2008), 015205, 14 pp. doi: 10.1088/1751-8113/41/1/015205.  Google Scholar

[12]

M. de León, J. C. Marrero and D. Martín de Diego, A geometric Hamilton-Jacobi theory for classical field theories, In: Variations, geometry and physics, 129-140, Nova Sci. Publ., New York, (2009).  Google Scholar

[13]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198. doi: 10.3934/jgm.2010.2.159.  Google Scholar

[14]

M. de León, D. Martín de Diego, J. C. Marrero, M. Salgado and S. Vilariño, Hamilton-Jacobi theory in $k$-symplectic field theories, Int. J. Geom. Meth. Mod. Phys., 7 (2010), 1491-1507. doi: 10.1142/S0219887810004919.  Google Scholar

[15]

M. de León, J. C. Marrero, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems, J. Math. Phys., 54 (2013), 032902, 32 pp. doi: 10.1063/1.4796088.  Google Scholar

[16]

M. de León, D. Martín de Diego and M. Vaquero, A Hamilton-Jacobi theory for singular lagrangian systems in the Skinner and Rusk setting, Int. J. Geom. Meth. Mod. Phys., 9 (2012), 1250074, 24 pp. doi: 10.1142/S0219887812500740.  Google Scholar

[17]

M. de León, D. Martín de Diego, C. Martínez-Campos and M. Vaquero, A Hamilton-Jacobi theory in infinite dimensional phase spaces,, In preparation., ().   Google Scholar

[18]

M. de León and P. R. Rodrigues, Methods of differential geometry in analytical mechanics, North-Holland Mathematics Studies, 158. North-Holland Publishing Co., Amsterdam, 1989.  Google Scholar

[19]

P. Libermann and Ch.M- Marle, Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Co., Dordrecht, 1987. doi: 10.1007/978-94-009-3807-6.  Google Scholar

[20]

J. C. Marrero and D. Sosa, The Hamilton-Jacobi equation on Lie affgebroids, Int. J. Geom. Methods Mod. Phys., 3 (2006), 605-622. doi: 10.1142/S0219887806001284.  Google Scholar

[21]

T. Oshawa and A. M. Bloch, Nonholonomic Hamilton-Jacobi equations and integrability, J. Geom. Mech., 1 (2009), 461-481. doi: 10.3934/jgm.2009.1.461.  Google Scholar

[22]

H. Rund, The Hamilton-Jacobi Theory in the Calculus of Variations, Hazell, Watson and Viney Ltd., Aylesbury, Buckinghamshire, U.K. 1966. Google Scholar

[23]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds, Progress in Mathematics, 118. Birkhäuser Verlag, Basel, 1994. doi: 10.1007/978-3-0348-8495-2.  Google Scholar

[24]

A. J. van der Schaft and B. M. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233. doi: 10.1016/0034-4877(94)90038-8.  Google Scholar

[1]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[2]

Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441

[3]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[4]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[5]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[6]

Piermarco Cannarsa, Marco Mazzola, Carlo Sinestrari. Global propagation of singularities for time dependent Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4225-4239. doi: 10.3934/dcds.2015.35.4225

[7]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[8]

Božzidar Jovanović. Symmetries of line bundles and Noether theorem for time-dependent nonholonomic systems. Journal of Geometric Mechanics, 2018, 10 (2) : 173-187. doi: 10.3934/jgm.2018006

[9]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[10]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[11]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[12]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[13]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[14]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[15]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[16]

Bernard Ducomet. Asymptotics for 1D flows with time-dependent external fields. Conference Publications, 2007, 2007 (Special) : 323-333. doi: 10.3934/proc.2007.2007.323

[17]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[18]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[19]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[20]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (108)
  • HTML views (0)
  • Cited by (13)

[Back to Top]