September  2014, 6(3): 279-296. doi: 10.3934/jgm.2014.6.279

Warped Poisson brackets on warped products

1. 

Laboratory of Algebra and Number Theory, Faculté de Mathématiques, USTHB, BP32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria, Algeria

2. 

Laboratory of Geometry, Analysis, Control and Applications, Université de Saïda, BP138, En-Nasr, 20000 Saïda, Algeria

Received  January 2013 Revised  August 2014 Published  September 2014

In this paper, we generalize the geometry of the product pseudo-Riemannian manifold equipped with the product Poisson structure ([10]) to the geometry of a warped product of pseudo-Riemannian manifolds equipped with a warped Poisson structure. We construct three bivector fields on a product manifold and show that each of them lead under certain conditions to a Poisson structure. One of these bivector fields will be called the warped bivector field. For a warped product of pseudo-Riemannian manifolds equipped with a warped bivector field, we compute the corresponding contravariant Levi-Civita connection and the curvatures associated with.
Citation: Yacine Aït Amrane, Rafik Nasri, Ahmed Zeglaoui. Warped Poisson brackets on warped products. Journal of Geometric Mechanics, 2014, 6 (3) : 279-296. doi: 10.3934/jgm.2014.6.279
References:
[1]

J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity,, Selected Studies: Physics-astrophysics, (1982), 41.   Google Scholar

[2]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature,, Trans. Amer. Math. Soc., 145 (1969), 1.  doi: 10.1090/S0002-9947-1969-0251664-4.  Google Scholar

[3]

M. Boucetta, Compatibilité des structures pseudo-riemanniennes et des structures de Poisson,, C. R. Acad. Sci. Paris, 333 (2001), 763.  doi: 10.1016/S0764-4442(01)02132-2.  Google Scholar

[4]

M. Boucetta, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras,, Differential Geometry and its Applications, 20 (2004), 279.  doi: 10.1016/j.difgeo.2003.10.013.  Google Scholar

[5]

J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms,, Progress in Mathematics, 242 (2005).   Google Scholar

[6]

R. L. Fernandes, Connections in Poisson geometry I: Holonomy and invariants,, J. Diff. Geom., 54 (2000), 303.   Google Scholar

[7]

E. Hawkins, Noncommutative rigidity,, Commun. Math. Phys., 246 (2004), 211.  doi: 10.1007/s00220-004-1036-4.  Google Scholar

[8]

E. Hawkins, The structure of noncommutative deformations,, J. Diff. Geom., 77 (2007), 385.   Google Scholar

[9]

R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits,, Sciences et Technologie, A-24 (2006), 15.   Google Scholar

[10]

R. Nasri and M. Djaa, On the geometry of the product Riemannian manifold with the Poisson structure,, International Electronic Journal of Geometry, 3 (2010), 1.   Google Scholar

[11]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity,, Academic Press, (1983).   Google Scholar

[12]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Progress in Mathematics, 118 (1994).  doi: 10.1007/978-3-0348-8495-2.  Google Scholar

show all references

References:
[1]

J. K. Beem, P. E. Ehrlich and Th. G. Powell, Warped product manifolds in relativity,, Selected Studies: Physics-astrophysics, (1982), 41.   Google Scholar

[2]

R. L. Bishop and B. O'Neill, Manifolds of negative curvature,, Trans. Amer. Math. Soc., 145 (1969), 1.  doi: 10.1090/S0002-9947-1969-0251664-4.  Google Scholar

[3]

M. Boucetta, Compatibilité des structures pseudo-riemanniennes et des structures de Poisson,, C. R. Acad. Sci. Paris, 333 (2001), 763.  doi: 10.1016/S0764-4442(01)02132-2.  Google Scholar

[4]

M. Boucetta, Poisson manifolds with compatible pseudo-metric and pseudo-Riemannian Lie algebras,, Differential Geometry and its Applications, 20 (2004), 279.  doi: 10.1016/j.difgeo.2003.10.013.  Google Scholar

[5]

J.-P. Dufour and N. T. Zung, Poisson Structures and Their Normal Forms,, Progress in Mathematics, 242 (2005).   Google Scholar

[6]

R. L. Fernandes, Connections in Poisson geometry I: Holonomy and invariants,, J. Diff. Geom., 54 (2000), 303.   Google Scholar

[7]

E. Hawkins, Noncommutative rigidity,, Commun. Math. Phys., 246 (2004), 211.  doi: 10.1007/s00220-004-1036-4.  Google Scholar

[8]

E. Hawkins, The structure of noncommutative deformations,, J. Diff. Geom., 77 (2007), 385.   Google Scholar

[9]

R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits,, Sciences et Technologie, A-24 (2006), 15.   Google Scholar

[10]

R. Nasri and M. Djaa, On the geometry of the product Riemannian manifold with the Poisson structure,, International Electronic Journal of Geometry, 3 (2010), 1.   Google Scholar

[11]

B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity,, Academic Press, (1983).   Google Scholar

[12]

I. Vaisman, Lectures on the Geometry of Poisson Manifolds,, Progress in Mathematics, 118 (1994).  doi: 10.1007/978-3-0348-8495-2.  Google Scholar

[1]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[2]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[3]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[4]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[7]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[8]

Harrison Bray. Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds. Journal of Modern Dynamics, 2020, 16: 305-329. doi: 10.3934/jmd.2020011

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[12]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[13]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[14]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[15]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[16]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[17]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[18]

Jing Zhou, Cheng Lu, Ye Tian, Xiaoying Tang. A socp relaxation based branch-and-bound method for generalized trust-region subproblem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 151-168. doi: 10.3934/jimo.2019104

[19]

Yen-Luan Chen, Chin-Chih Chang, Zhe George Zhang, Xiaofeng Chen. Optimal preventive "maintenance-first or -last" policies with generalized imperfect maintenance models. Journal of Industrial & Management Optimization, 2021, 17 (1) : 501-516. doi: 10.3934/jimo.2020149

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (88)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]