September  2014, 6(3): 297-318. doi: 10.3934/jgm.2014.6.297

Reduction of cluster iteration maps

1. 

Centro de Matemática da Universidade do Porto (CMUP), Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, 687, 4169-007 Porto, Portugal

2. 

Center for Mathematical Analysis, Geometry and Dynamical Systems (CAMGSD), Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Received  July 2013 Revised  July 2014 Published  September 2014

We study iteration maps of difference equations arising from mutation periodic quivers of arbitrary period. Combining tools from cluster algebra theory and presymplectic geometry, we show that these cluster iteration maps can be reduced to symplectic maps on a lower dimensional submanifold, provided the matrix representing the quiver is singular. The reduced iteration map is explicitly computed for several periodic quivers using either the presymplectic reduction or a Poisson reduction via log-canonical Poisson structures.
Citation: Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297
References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978). Google Scholar

[2]

I. Cruz and M. E. Sousa-Dias, Reduction of order of cluster-type recurrence relations,, São Paulo J. Math. Sci., 6 (2012), 203. doi: 10.11606/issn.2316-9028.v6i2p203-225. Google Scholar

[3]

J. Duistermaat, Discrete Integrable Systems. QRT Maps and Elliptic Surfaces,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-72923-7. Google Scholar

[4]

S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations,, J. Amer. Math. Soc., 15 (2002), 497. doi: 10.1090/S0894-0347-01-00385-X. Google Scholar

[5]

A. Fordy and A. Hone, Symplectic maps from cluster algebras,, SIGMA Symmetry, 7 (2011). doi: 10.3842/sigma.2011.091. Google Scholar

[6]

A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps,, Comm. Math. Phys., 325 (2014), 527. doi: 10.1007/s00220-013-1867-y. Google Scholar

[7]

A. Fordy and R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences,, J. Algebraic Combin., 34 (2011), 19. doi: 10.1007/s10801-010-0262-4. Google Scholar

[8]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry,, Mathematical Surveys and Monographs, 167 (2010). doi: 10.1090/surv/167. Google Scholar

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms,, Duke Math. J., 127 (2005), 291. doi: 10.1215/S0012-7094-04-12723-X. Google Scholar

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry,, Mosc. Math. J., 3 (2003), 899. Google Scholar

[11]

A. Hone, Laurent polynomials and superintegrable maps,, SIGMA Symmetry, 3 (2007). doi: 10.3842/sigma.2007.022. Google Scholar

[12]

A. Hone and R. Inoue, Discrete Painlevé equations from Y-systems, preprint,, , (). Google Scholar

[13]

A. Iatrou and J. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves II,, Nonlinearity, 15 (2002), 459. doi: 10.1088/0951-7715/15/2/313. Google Scholar

[14]

B. Keller, Cluster algebras, quiver representations and triangulated categories,, in Triangulated Categories (eds. Thorsten Holm et al.), 375 (2010), 76. doi: 10.1017/cbo9781139107075.004. Google Scholar

[15]

P. Libermann and C-M. Marle, Symplectic Geometry and Analytical Mechanics,, Mathematics and its Applications, 35 (1987). doi: 10.1007/978-94-009-3807-6. Google Scholar

[16]

S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall Inc., (1964). Google Scholar

[17]

G. Quispel, J. Roberts and C. Thompson, Integrable mappings and soliton equations,, Phys. Lett. A, 126 (1988), 419. doi: 10.1016/0375-9601(88)90803-1. Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978). Google Scholar

[2]

I. Cruz and M. E. Sousa-Dias, Reduction of order of cluster-type recurrence relations,, São Paulo J. Math. Sci., 6 (2012), 203. doi: 10.11606/issn.2316-9028.v6i2p203-225. Google Scholar

[3]

J. Duistermaat, Discrete Integrable Systems. QRT Maps and Elliptic Surfaces,, Springer Monographs in Mathematics, (2010). doi: 10.1007/978-0-387-72923-7. Google Scholar

[4]

S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations,, J. Amer. Math. Soc., 15 (2002), 497. doi: 10.1090/S0894-0347-01-00385-X. Google Scholar

[5]

A. Fordy and A. Hone, Symplectic maps from cluster algebras,, SIGMA Symmetry, 7 (2011). doi: 10.3842/sigma.2011.091. Google Scholar

[6]

A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps,, Comm. Math. Phys., 325 (2014), 527. doi: 10.1007/s00220-013-1867-y. Google Scholar

[7]

A. Fordy and R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences,, J. Algebraic Combin., 34 (2011), 19. doi: 10.1007/s10801-010-0262-4. Google Scholar

[8]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry,, Mathematical Surveys and Monographs, 167 (2010). doi: 10.1090/surv/167. Google Scholar

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms,, Duke Math. J., 127 (2005), 291. doi: 10.1215/S0012-7094-04-12723-X. Google Scholar

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry,, Mosc. Math. J., 3 (2003), 899. Google Scholar

[11]

A. Hone, Laurent polynomials and superintegrable maps,, SIGMA Symmetry, 3 (2007). doi: 10.3842/sigma.2007.022. Google Scholar

[12]

A. Hone and R. Inoue, Discrete Painlevé equations from Y-systems, preprint,, , (). Google Scholar

[13]

A. Iatrou and J. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves II,, Nonlinearity, 15 (2002), 459. doi: 10.1088/0951-7715/15/2/313. Google Scholar

[14]

B. Keller, Cluster algebras, quiver representations and triangulated categories,, in Triangulated Categories (eds. Thorsten Holm et al.), 375 (2010), 76. doi: 10.1017/cbo9781139107075.004. Google Scholar

[15]

P. Libermann and C-M. Marle, Symplectic Geometry and Analytical Mechanics,, Mathematics and its Applications, 35 (1987). doi: 10.1007/978-94-009-3807-6. Google Scholar

[16]

S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall Inc., (1964). Google Scholar

[17]

G. Quispel, J. Roberts and C. Thompson, Integrable mappings and soliton equations,, Phys. Lett. A, 126 (1988), 419. doi: 10.1016/0375-9601(88)90803-1. Google Scholar

[1]

Carles Simó, Dmitry Treschev. Stability islands in the vicinity of separatrices of near-integrable symplectic maps. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 681-698. doi: 10.3934/dcdsb.2008.10.681

[2]

Rafael de la Llave, Jason D. Mireles James. Parameterization of invariant manifolds by reducibility for volume preserving and symplectic maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4321-4360. doi: 10.3934/dcds.2012.32.4321

[3]

Joshua Cape, Hans-Christian Herbig, Christopher Seaton. Symplectic reduction at zero angular momentum. Journal of Geometric Mechanics, 2016, 8 (1) : 13-34. doi: 10.3934/jgm.2016.8.13

[4]

Daniel N. Dore, Andrew D. Hanlon. Area preserving maps on $\boldsymbol{S^2}$: A lower bound on the $\boldsymbol{C^0}$-norm using symplectic spectral invariants. Electronic Research Announcements, 2013, 20: 97-102. doi: 10.3934/era.2013.20.97

[5]

Michael Entov, Leonid Polterovich, Daniel Rosen. Poisson brackets, quasi-states and symplectic integrators. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1455-1468. doi: 10.3934/dcds.2010.28.1455

[6]

P. Balseiro, M. de León, Juan Carlos Marrero, D. Martín de Diego. The ubiquity of the symplectic Hamiltonian equations in mechanics. Journal of Geometric Mechanics, 2009, 1 (1) : 1-34. doi: 10.3934/jgm.2009.1.1

[7]

Luis Álvarez–cónsul, David Fernández. Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1. Conference Publications, 2015, 2015 (special) : 19-28. doi: 10.3934/proc.2015.0019

[8]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[9]

L. Búa, T. Mestdag, M. Salgado. Symmetry reduction, integrability and reconstruction in $k$-symplectic field theory. Journal of Geometric Mechanics, 2015, 7 (4) : 395-429. doi: 10.3934/jgm.2015.7.395

[10]

Peigen Cao, Fang Li, Siyang Liu, Jie Pan. A conjecture on cluster automorphisms of cluster algebras. Electronic Research Archive, 2019, 27: 1-6. doi: 10.3934/era.2019006

[11]

Michael Gekhtman, Michael Shapiro, Serge Tabachnikov, Alek Vainshtein. Higher pentagram maps, weighted directed networks, and cluster dynamics. Electronic Research Announcements, 2012, 19: 1-17. doi: 10.3934/era.2012.19.1

[12]

Valentin Ovsienko, MichaeL Shapiro. Cluster algebras with Grassmann variables. Electronic Research Announcements, 2019, 26: 1-15. doi: 10.3934/era.2019.26.001

[13]

Santiago Cañez. Double groupoids and the symplectic category. Journal of Geometric Mechanics, 2018, 10 (2) : 217-250. doi: 10.3934/jgm.2018009

[14]

Chungen Liu, Qi Wang. Symmetrical symplectic capacity with applications. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2253-2270. doi: 10.3934/dcds.2012.32.2253

[15]

Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018

[16]

Andrejs Reinfelds, Klara Janglajew. Reduction principle in the theory of stability of difference equations. Conference Publications, 2007, 2007 (Special) : 864-874. doi: 10.3934/proc.2007.2007.864

[17]

Aihua Fan, Shilei Fan, Lingmin Liao, Yuefei Wang. Minimality of p-adic rational maps with good reduction. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3161-3182. doi: 10.3934/dcds.2017135

[18]

Björn Gebhard. A note concerning a property of symplectic matrices. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2135-2137. doi: 10.3934/cpaa.2018101

[19]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[20]

George Papadopoulos, Holger R. Dullin. Semi-global symplectic invariants of the Euler top. Journal of Geometric Mechanics, 2013, 5 (2) : 215-232. doi: 10.3934/jgm.2013.5.215

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]