September  2014, 6(3): 297-318. doi: 10.3934/jgm.2014.6.297

Reduction of cluster iteration maps

1. 

Centro de Matemática da Universidade do Porto (CMUP), Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, 687, 4169-007 Porto, Portugal

2. 

Center for Mathematical Analysis, Geometry and Dynamical Systems (CAMGSD), Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

Received  July 2013 Revised  July 2014 Published  September 2014

We study iteration maps of difference equations arising from mutation periodic quivers of arbitrary period. Combining tools from cluster algebra theory and presymplectic geometry, we show that these cluster iteration maps can be reduced to symplectic maps on a lower dimensional submanifold, provided the matrix representing the quiver is singular. The reduced iteration map is explicitly computed for several periodic quivers using either the presymplectic reduction or a Poisson reduction via log-canonical Poisson structures.
Citation: Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297
References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).   Google Scholar

[2]

I. Cruz and M. E. Sousa-Dias, Reduction of order of cluster-type recurrence relations,, São Paulo J. Math. Sci., 6 (2012), 203.  doi: 10.11606/issn.2316-9028.v6i2p203-225.  Google Scholar

[3]

J. Duistermaat, Discrete Integrable Systems. QRT Maps and Elliptic Surfaces,, Springer Monographs in Mathematics, (2010).  doi: 10.1007/978-0-387-72923-7.  Google Scholar

[4]

S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations,, J. Amer. Math. Soc., 15 (2002), 497.  doi: 10.1090/S0894-0347-01-00385-X.  Google Scholar

[5]

A. Fordy and A. Hone, Symplectic maps from cluster algebras,, SIGMA Symmetry, 7 (2011).  doi: 10.3842/sigma.2011.091.  Google Scholar

[6]

A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps,, Comm. Math. Phys., 325 (2014), 527.  doi: 10.1007/s00220-013-1867-y.  Google Scholar

[7]

A. Fordy and R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences,, J. Algebraic Combin., 34 (2011), 19.  doi: 10.1007/s10801-010-0262-4.  Google Scholar

[8]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry,, Mathematical Surveys and Monographs, 167 (2010).  doi: 10.1090/surv/167.  Google Scholar

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms,, Duke Math. J., 127 (2005), 291.  doi: 10.1215/S0012-7094-04-12723-X.  Google Scholar

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry,, Mosc. Math. J., 3 (2003), 899.   Google Scholar

[11]

A. Hone, Laurent polynomials and superintegrable maps,, SIGMA Symmetry, 3 (2007).  doi: 10.3842/sigma.2007.022.  Google Scholar

[12]

A. Hone and R. Inoue, Discrete Painlevé equations from Y-systems, preprint,, , ().   Google Scholar

[13]

A. Iatrou and J. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves II,, Nonlinearity, 15 (2002), 459.  doi: 10.1088/0951-7715/15/2/313.  Google Scholar

[14]

B. Keller, Cluster algebras, quiver representations and triangulated categories,, in Triangulated Categories (eds. Thorsten Holm et al.), 375 (2010), 76.  doi: 10.1017/cbo9781139107075.004.  Google Scholar

[15]

P. Libermann and C-M. Marle, Symplectic Geometry and Analytical Mechanics,, Mathematics and its Applications, 35 (1987).  doi: 10.1007/978-94-009-3807-6.  Google Scholar

[16]

S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall Inc., (1964).   Google Scholar

[17]

G. Quispel, J. Roberts and C. Thompson, Integrable mappings and soliton equations,, Phys. Lett. A, 126 (1988), 419.  doi: 10.1016/0375-9601(88)90803-1.  Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).   Google Scholar

[2]

I. Cruz and M. E. Sousa-Dias, Reduction of order of cluster-type recurrence relations,, São Paulo J. Math. Sci., 6 (2012), 203.  doi: 10.11606/issn.2316-9028.v6i2p203-225.  Google Scholar

[3]

J. Duistermaat, Discrete Integrable Systems. QRT Maps and Elliptic Surfaces,, Springer Monographs in Mathematics, (2010).  doi: 10.1007/978-0-387-72923-7.  Google Scholar

[4]

S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations,, J. Amer. Math. Soc., 15 (2002), 497.  doi: 10.1090/S0894-0347-01-00385-X.  Google Scholar

[5]

A. Fordy and A. Hone, Symplectic maps from cluster algebras,, SIGMA Symmetry, 7 (2011).  doi: 10.3842/sigma.2011.091.  Google Scholar

[6]

A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps,, Comm. Math. Phys., 325 (2014), 527.  doi: 10.1007/s00220-013-1867-y.  Google Scholar

[7]

A. Fordy and R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences,, J. Algebraic Combin., 34 (2011), 19.  doi: 10.1007/s10801-010-0262-4.  Google Scholar

[8]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry,, Mathematical Surveys and Monographs, 167 (2010).  doi: 10.1090/surv/167.  Google Scholar

[9]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms,, Duke Math. J., 127 (2005), 291.  doi: 10.1215/S0012-7094-04-12723-X.  Google Scholar

[10]

M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry,, Mosc. Math. J., 3 (2003), 899.   Google Scholar

[11]

A. Hone, Laurent polynomials and superintegrable maps,, SIGMA Symmetry, 3 (2007).  doi: 10.3842/sigma.2007.022.  Google Scholar

[12]

A. Hone and R. Inoue, Discrete Painlevé equations from Y-systems, preprint,, , ().   Google Scholar

[13]

A. Iatrou and J. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves II,, Nonlinearity, 15 (2002), 459.  doi: 10.1088/0951-7715/15/2/313.  Google Scholar

[14]

B. Keller, Cluster algebras, quiver representations and triangulated categories,, in Triangulated Categories (eds. Thorsten Holm et al.), 375 (2010), 76.  doi: 10.1017/cbo9781139107075.004.  Google Scholar

[15]

P. Libermann and C-M. Marle, Symplectic Geometry and Analytical Mechanics,, Mathematics and its Applications, 35 (1987).  doi: 10.1007/978-94-009-3807-6.  Google Scholar

[16]

S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall Inc., (1964).   Google Scholar

[17]

G. Quispel, J. Roberts and C. Thompson, Integrable mappings and soliton equations,, Phys. Lett. A, 126 (1988), 419.  doi: 10.1016/0375-9601(88)90803-1.  Google Scholar

[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[3]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[4]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[5]

Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020365

[6]

Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278

[7]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[8]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[9]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[10]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[11]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[13]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[14]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[15]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003

[16]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[17]

Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[18]

Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020120

[19]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[20]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]