-
Previous Article
Discriminantly separable polynomials and quad-equations
- JGM Home
- This Issue
-
Next Article
Warped Poisson brackets on warped products
Reduction of cluster iteration maps
1. | Centro de Matemática da Universidade do Porto (CMUP), Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, R. Campo Alegre, 687, 4169-007 Porto, Portugal |
2. | Center for Mathematical Analysis, Geometry and Dynamical Systems (CAMGSD), Departamento de Matemática, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal |
References:
[1] |
R. Abraham and J. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).
|
[2] |
I. Cruz and M. E. Sousa-Dias, Reduction of order of cluster-type recurrence relations,, São Paulo J. Math. Sci., 6 (2012), 203.
doi: 10.11606/issn.2316-9028.v6i2p203-225. |
[3] |
J. Duistermaat, Discrete Integrable Systems. QRT Maps and Elliptic Surfaces,, Springer Monographs in Mathematics, (2010).
doi: 10.1007/978-0-387-72923-7. |
[4] |
S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations,, J. Amer. Math. Soc., 15 (2002), 497.
doi: 10.1090/S0894-0347-01-00385-X. |
[5] |
A. Fordy and A. Hone, Symplectic maps from cluster algebras,, SIGMA Symmetry, 7 (2011).
doi: 10.3842/sigma.2011.091. |
[6] |
A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps,, Comm. Math. Phys., 325 (2014), 527.
doi: 10.1007/s00220-013-1867-y. |
[7] |
A. Fordy and R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences,, J. Algebraic Combin., 34 (2011), 19.
doi: 10.1007/s10801-010-0262-4. |
[8] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry,, Mathematical Surveys and Monographs, 167 (2010).
doi: 10.1090/surv/167. |
[9] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms,, Duke Math. J., 127 (2005), 291.
doi: 10.1215/S0012-7094-04-12723-X. |
[10] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry,, Mosc. Math. J., 3 (2003), 899.
|
[11] |
A. Hone, Laurent polynomials and superintegrable maps,, SIGMA Symmetry, 3 (2007).
doi: 10.3842/sigma.2007.022. |
[12] |
A. Hone and R. Inoue, Discrete Painlevé equations from Y-systems, preprint,, , (). Google Scholar |
[13] |
A. Iatrou and J. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves II,, Nonlinearity, 15 (2002), 459.
doi: 10.1088/0951-7715/15/2/313. |
[14] |
B. Keller, Cluster algebras, quiver representations and triangulated categories,, in Triangulated Categories (eds. Thorsten Holm et al.), 375 (2010), 76.
doi: 10.1017/cbo9781139107075.004. |
[15] |
P. Libermann and C-M. Marle, Symplectic Geometry and Analytical Mechanics,, Mathematics and its Applications, 35 (1987).
doi: 10.1007/978-94-009-3807-6. |
[16] |
S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall Inc., (1964).
|
[17] |
G. Quispel, J. Roberts and C. Thompson, Integrable mappings and soliton equations,, Phys. Lett. A, 126 (1988), 419.
doi: 10.1016/0375-9601(88)90803-1. |
show all references
References:
[1] |
R. Abraham and J. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).
|
[2] |
I. Cruz and M. E. Sousa-Dias, Reduction of order of cluster-type recurrence relations,, São Paulo J. Math. Sci., 6 (2012), 203.
doi: 10.11606/issn.2316-9028.v6i2p203-225. |
[3] |
J. Duistermaat, Discrete Integrable Systems. QRT Maps and Elliptic Surfaces,, Springer Monographs in Mathematics, (2010).
doi: 10.1007/978-0-387-72923-7. |
[4] |
S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations,, J. Amer. Math. Soc., 15 (2002), 497.
doi: 10.1090/S0894-0347-01-00385-X. |
[5] |
A. Fordy and A. Hone, Symplectic maps from cluster algebras,, SIGMA Symmetry, 7 (2011).
doi: 10.3842/sigma.2011.091. |
[6] |
A. Fordy and A. Hone, Discrete integrable systems and Poisson algebras from cluster maps,, Comm. Math. Phys., 325 (2014), 527.
doi: 10.1007/s00220-013-1867-y. |
[7] |
A. Fordy and R. Marsh, Cluster mutation-periodic quivers and associated Laurent sequences,, J. Algebraic Combin., 34 (2011), 19.
doi: 10.1007/s10801-010-0262-4. |
[8] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster Algebras and Poisson Geometry,, Mathematical Surveys and Monographs, 167 (2010).
doi: 10.1090/surv/167. |
[9] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Weil-Petersson forms,, Duke Math. J., 127 (2005), 291.
doi: 10.1215/S0012-7094-04-12723-X. |
[10] |
M. Gekhtman, M. Shapiro and A. Vainshtein, Cluster algebras and Poisson geometry,, Mosc. Math. J., 3 (2003), 899.
|
[11] |
A. Hone, Laurent polynomials and superintegrable maps,, SIGMA Symmetry, 3 (2007).
doi: 10.3842/sigma.2007.022. |
[12] |
A. Hone and R. Inoue, Discrete Painlevé equations from Y-systems, preprint,, , (). Google Scholar |
[13] |
A. Iatrou and J. Roberts, Integrable mappings of the plane preserving biquadratic invariant curves II,, Nonlinearity, 15 (2002), 459.
doi: 10.1088/0951-7715/15/2/313. |
[14] |
B. Keller, Cluster algebras, quiver representations and triangulated categories,, in Triangulated Categories (eds. Thorsten Holm et al.), 375 (2010), 76.
doi: 10.1017/cbo9781139107075.004. |
[15] |
P. Libermann and C-M. Marle, Symplectic Geometry and Analytical Mechanics,, Mathematics and its Applications, 35 (1987).
doi: 10.1007/978-94-009-3807-6. |
[16] |
S. Sternberg, Lectures on Differential Geometry,, Prentice-Hall Inc., (1964).
|
[17] |
G. Quispel, J. Roberts and C. Thompson, Integrable mappings and soliton equations,, Phys. Lett. A, 126 (1988), 419.
doi: 10.1016/0375-9601(88)90803-1. |
[1] |
Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217 |
[2] |
Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309 |
[3] |
Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228 |
[4] |
Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317 |
[5] |
Yueh-Cheng Kuo, Huey-Er Lin, Shih-Feng Shieh. Asymptotic dynamics of hermitian Riccati difference equations. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020365 |
[6] |
Álvaro Castañeda, Pablo González, Gonzalo Robledo. Topological Equivalence of nonautonomous difference equations with a family of dichotomies on the half line. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020278 |
[7] |
Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124 |
[8] |
Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093 |
[9] |
Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125 |
[10] |
Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003 |
[11] |
Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086 |
[12] |
Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029 |
[13] |
Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020349 |
[14] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[15] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021003 |
[16] |
Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079 |
[17] |
Anton A. Kutsenko. Isomorphism between one-dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270 |
[18] |
Shanding Xu, Longjiang Qu, Xiwang Cao. Three classes of partitioned difference families and their optimal constant composition codes. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020120 |
[19] |
Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020460 |
[20] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]