September  2014, 6(3): 319-333. doi: 10.3934/jgm.2014.6.319

Discriminantly separable polynomials and quad-equations

1. 

The Department of Mathematical Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson TX 75080, United States

2. 

Faculty for Traffic and Transport Engineering, University of Belgrade, Vojvode Stepe 305, 11000 Belgrade, Serbia

Received  April 2013 Revised  July 2014 Published  September 2014

We classify the discriminantly separable polynomials of degree two in each of three variables, defined by a property that all the discriminants as polynomials of two variables are factorized as products of two polynomials of one variable each. Our classification is based on the study of structures of zeros of a polynomial component $P$ of a discriminant. This classification is related to the classification of pencils of conics in a delicate way. We establish a relationship between our classification and the classification of integrable quad-equations which has been suggested recently by Adler, Bobenko, and Suris.
Citation: Vladimir Dragović, Katarina Kukić. Discriminantly separable polynomials and quad-equations. Journal of Geometric Mechanics, 2014, 6 (3) : 319-333. doi: 10.3934/jgm.2014.6.319
References:
[1]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach,, Commun. Math. Phys., 233 (2003), 513.   Google Scholar

[2]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Discrete nonlinear hiperbolic equations. Classification of integrable cases,, Funct. Anal. Appl, 43 (2009), 3.  doi: 10.1007/s10688-009-0002-5.  Google Scholar

[3]

V. E. Adler, A. I. Bobenko and Yu. B. Suris, Geometry of Yang-Baxter maps: Pencils of conics and quadrirational mappings,, Comm. Anal. Geom., 12 (2004), 967.  doi: 10.4310/CAG.2004.v12.n5.a1.  Google Scholar

[4]

A. I. Bobenko and Yu. B. Suris, Integrable noncommutative equations on quad-graphs. The consistency approach,, Lett. Math. Phys., 61 (2002), 241.  doi: 10.1023/A:1021249131979.  Google Scholar

[5]

A. I. Bobenko and Yu. B. Suris, Integrable systems on quad-graphs,, Int. Math. Res. Not., (2002), 573.  doi: 10.1155/S1073792802110075.  Google Scholar

[6]

V. Buchstaber, n-valued groups: Theory and applications,, Moscow Mathematical Journal, 6 (2006), 57.   Google Scholar

[7]

V. M. Buchstaber, Functional equations, associated with addition theorems for elliptic functions, and two-valued algebraic groups,, Russian Math. Surv., 45 (1990), 213.  doi: 10.1070/RM1990v045n03ABEH002361.  Google Scholar

[8]

V. M. Buchstaber and V. Dragović, Two-valued groups, Kummer varieties and integrable billiards,, preprint, ().   Google Scholar

[9]

V. M. Buchstaber and S. P. Novikov, Formal groups, power systems and Adams operators,, Mat. Sb. (N. S), 84(126) (1971), 81.   Google Scholar

[10]

V. M. Buchstaber and A. P. Veselov, Integrable correspondences and algebraic representations of multivalued groups,, Internat. Math. Res. Notices, 8 (1996), 381.  doi: 10.1155/S1073792896000256.  Google Scholar

[11]

G. Darboux, Principes de Géométrie Analytique,, Gauthier-Villars, (1917).   Google Scholar

[12]

V. Dragović, Poncelet-Darboux curves, their complete decomposition and Marden theorem,, Int. Math. Res. Notes, 2011 (2011), 3502.  doi: 10.1093/imrn/rnq229.  Google Scholar

[13]

V. Dragović, Generalization and geometrization of the Kowalevski top,, Communications in Math. Phys., 298 (2010), 37.  doi: 10.1007/s00220-010-1066-z.  Google Scholar

[14]

V. Dragović and K. Kukić, New examples of systems of the Kowalevski type,, Regular and Chaotic Dynamics, 16 (2011), 484.  doi: 10.1134/S1560354711050054.  Google Scholar

[15]

V. Dragović and K. Kukić, Systems of the Kowalevski type and discriminantly separable polynomials,, Regular and Chaotic Dynamics, 19 (2014), 162.  doi: 10.1134/S1560354714020026.  Google Scholar

[16]

V. Dragović and M. Radnović, Poncelet Porisms and Beyond,, Springer, (2011).  doi: 10.1007/978-3-0348-0015-0.  Google Scholar

[17]

V. Dragović and M. Radnović, Billiard algebra, integrable line congruences and DR-nets,, J. Nonlinear Mathematical Physics, 19 (2012).  doi: 10.1142/S1402925112500192.  Google Scholar

[18]

V. V. Golubev, Lectures on the Integration of Motion of a Heavy Rigid Body Around a Fixed Point,, Gostechizdat, (1953).   Google Scholar

[19]

S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.  doi: 10.1007/BF02592182.  Google Scholar

[20]

J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry,, Clarendon Press, (1998).   Google Scholar

show all references

References:
[1]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach,, Commun. Math. Phys., 233 (2003), 513.   Google Scholar

[2]

V. E. Adler, A. I. Bobenko and Y. B. Suris, Discrete nonlinear hiperbolic equations. Classification of integrable cases,, Funct. Anal. Appl, 43 (2009), 3.  doi: 10.1007/s10688-009-0002-5.  Google Scholar

[3]

V. E. Adler, A. I. Bobenko and Yu. B. Suris, Geometry of Yang-Baxter maps: Pencils of conics and quadrirational mappings,, Comm. Anal. Geom., 12 (2004), 967.  doi: 10.4310/CAG.2004.v12.n5.a1.  Google Scholar

[4]

A. I. Bobenko and Yu. B. Suris, Integrable noncommutative equations on quad-graphs. The consistency approach,, Lett. Math. Phys., 61 (2002), 241.  doi: 10.1023/A:1021249131979.  Google Scholar

[5]

A. I. Bobenko and Yu. B. Suris, Integrable systems on quad-graphs,, Int. Math. Res. Not., (2002), 573.  doi: 10.1155/S1073792802110075.  Google Scholar

[6]

V. Buchstaber, n-valued groups: Theory and applications,, Moscow Mathematical Journal, 6 (2006), 57.   Google Scholar

[7]

V. M. Buchstaber, Functional equations, associated with addition theorems for elliptic functions, and two-valued algebraic groups,, Russian Math. Surv., 45 (1990), 213.  doi: 10.1070/RM1990v045n03ABEH002361.  Google Scholar

[8]

V. M. Buchstaber and V. Dragović, Two-valued groups, Kummer varieties and integrable billiards,, preprint, ().   Google Scholar

[9]

V. M. Buchstaber and S. P. Novikov, Formal groups, power systems and Adams operators,, Mat. Sb. (N. S), 84(126) (1971), 81.   Google Scholar

[10]

V. M. Buchstaber and A. P. Veselov, Integrable correspondences and algebraic representations of multivalued groups,, Internat. Math. Res. Notices, 8 (1996), 381.  doi: 10.1155/S1073792896000256.  Google Scholar

[11]

G. Darboux, Principes de Géométrie Analytique,, Gauthier-Villars, (1917).   Google Scholar

[12]

V. Dragović, Poncelet-Darboux curves, their complete decomposition and Marden theorem,, Int. Math. Res. Notes, 2011 (2011), 3502.  doi: 10.1093/imrn/rnq229.  Google Scholar

[13]

V. Dragović, Generalization and geometrization of the Kowalevski top,, Communications in Math. Phys., 298 (2010), 37.  doi: 10.1007/s00220-010-1066-z.  Google Scholar

[14]

V. Dragović and K. Kukić, New examples of systems of the Kowalevski type,, Regular and Chaotic Dynamics, 16 (2011), 484.  doi: 10.1134/S1560354711050054.  Google Scholar

[15]

V. Dragović and K. Kukić, Systems of the Kowalevski type and discriminantly separable polynomials,, Regular and Chaotic Dynamics, 19 (2014), 162.  doi: 10.1134/S1560354714020026.  Google Scholar

[16]

V. Dragović and M. Radnović, Poncelet Porisms and Beyond,, Springer, (2011).  doi: 10.1007/978-3-0348-0015-0.  Google Scholar

[17]

V. Dragović and M. Radnović, Billiard algebra, integrable line congruences and DR-nets,, J. Nonlinear Mathematical Physics, 19 (2012).  doi: 10.1142/S1402925112500192.  Google Scholar

[18]

V. V. Golubev, Lectures on the Integration of Motion of a Heavy Rigid Body Around a Fixed Point,, Gostechizdat, (1953).   Google Scholar

[19]

S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe,, Acta Math., 12 (1889), 177.  doi: 10.1007/BF02592182.  Google Scholar

[20]

J. G. Semple and G. T. Kneebone, Algebraic Projective Geometry,, Clarendon Press, (1998).   Google Scholar

[1]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[2]

Wen Huang, Jianya Liu, Ke Wang. Möbius disjointness for skew products on a circle and a nilmanifold. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021006

[3]

Tuoc Phan, Grozdena Todorova, Borislav Yordanov. Existence uniqueness and regularity theory for elliptic equations with complex-valued potentials. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1071-1099. doi: 10.3934/dcds.2020310

[4]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[5]

Yuxi Zheng. Absorption of characteristics by sonic curve of the two-dimensional Euler equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 605-616. doi: 10.3934/dcds.2009.23.605

[6]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[7]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[8]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[9]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[10]

He Zhang, John Harlim, Xiantao Li. Estimating linear response statistics using orthogonal polynomials: An RKHS formulation. Foundations of Data Science, 2020, 2 (4) : 443-485. doi: 10.3934/fods.2020021

[11]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[12]

Ziang Long, Penghang Yin, Jack Xin. Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying linearly non-separable data. Inverse Problems & Imaging, 2021, 15 (1) : 41-62. doi: 10.3934/ipi.2020077

[13]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[14]

Hongwei Liu, Jingge Liu. On $ \sigma $-self-orthogonal constacyclic codes over $ \mathbb F_{p^m}+u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020127

[15]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[16]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[17]

Hai Q. Dinh, Bac T. Nguyen, Paravee Maneejuk. Constacyclic codes of length $ 8p^s $ over $ \mathbb F_{p^m} + u\mathbb F_{p^m} $. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020123

[18]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[19]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[20]

Saadoun Mahmoudi, Karim Samei. Codes over $ \frak m $-adic completion rings. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020122

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]