September  2014, 6(3): 335-372. doi: 10.3934/jgm.2014.6.335

Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle

1. 

Institute for Applied Mathematics, University of Hanover, D-30167 Hanover

2. 

Institut de Mathématiques de Marseille, Aix Marseille Université, CNRS, Centrale Marseille, 13453 Marseille, France

Received  November 2013 Revised  March 2014 Published  September 2014

In this paper, we study the geodesic flow of a right-invariant metric induced by a general Fourier multiplier on the diffeomorphism group of the circle and on some of its homogeneous spaces. This study covers in particular right-invariant metrics induced by Sobolev norms of fractional order. We show that, under a certain condition on the symbol of the inertia operator (which is satisfied for the fractional Sobolev norm $H^{s}$ for $s \ge 1/2$), the corresponding initial value problem is well-posed in the smooth category and that the Riemannian exponential map is a smooth local diffeomorphism. Paradigmatic examples of our general setting cover, besides all traditional Euler equations induced by a local inertia operator, the Constantin-Lax-Majda equation, and the Euler-Weil-Petersson equation.
Citation: Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335
References:
[1]

V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Global Anal. Geom., 44 (2013), 5.  doi: 10.1007/s10455-012-9353-x.  Google Scholar

[3]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996.  doi: 10.1137/050623036.  Google Scholar

[4]

M. Bruveris, The energy functional on the Virasoro-Bott group with the $L^{2}$-metric has no local minima,, Ann. Global Anal. Geom., 43 (2013), 385.  doi: 10.1007/s10455-012-9350-0.  Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems,, J. Phys. A, 35 (2002).  doi: 10.1088/0305-4470/35/32/201.  Google Scholar

[7]

A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[8]

P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715.  doi: 10.1002/cpa.3160380605.  Google Scholar

[9]

D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[10]

J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation,, Math. Z., 269 (2011), 1137.  doi: 10.1007/s00209-010-0778-2.  Google Scholar

[11]

J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation,, Commun. Pure Appl. Anal., 11 (2012), 1407.  doi: 10.3934/cpaa.2012.11.1407.  Google Scholar

[12]

J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation,, Communications in Contemporary Mathematics, 14 (2012).  doi: 10.1142/S0219199712500162.  Google Scholar

[13]

L. P. Euler, Du mouvement de rotation des corps solides autour d'un axe variable,, Mémoires de l'académie des sciences de Berlin, 14 (1765), 154.   Google Scholar

[14]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Phys. D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[15]

F. Gay-Balmaz, Infinite Dimensional Geodesic Flows and the Universal Teichmüller Space,, PhD thesis, (2009).   Google Scholar

[16]

E. Grong, I. Markina and A. Vasil'ev, Sub-Riemannian geometry on infinite-dimensional manifolds,, ArXiv e-prints, ().  doi: 10.1007/s12220-014-9523-0.  Google Scholar

[17]

E. Grong, I. Markina and A. Vasil'ev, Sub-Riemannian structures corresponding to Kählerian metrics on the universal Teichmüller space and curve,, ArXiv e-prints, ().   Google Scholar

[18]

L. Guieu and C. Roger, L'algèbre et le Groupe de Virasoro,, Les Publications CRM, (2007).   Google Scholar

[19]

R. S. Hamilton, The inverse function theorem of Nash and Moser,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65.  doi: 10.1090/S0273-0979-1982-15004-2.  Google Scholar

[20]

D. D. Holm, J. E. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[21]

J. K. Hunter and R. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498.  doi: 10.1137/0151075.  Google Scholar

[22]

H. Inci, T. Kappeler and P. Topalov, On the Regularity of the Composition of Diffeomorphisms, vol. 226 of Memoirs of the American Mathematical Society,, 1st edition, (2013).  doi: 10.1090/S0065-9266-2013-00676-4.  Google Scholar

[23]

B. Khesin, J. Lenells and G. Misiołek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms,, Math. Ann., 342 (2008), 617.  doi: 10.1007/s00208-008-0250-3.  Google Scholar

[24]

B. Khesin and G. Misiołek, Euler equations on homogeneous spaces and Virasoro orbits,, Adv. Math., 176 (2003), 116.  doi: 10.1016/S0001-8708(02)00063-4.  Google Scholar

[25]

B. Kolev, Lie groups and mechanics: An introduction,, J. Nonlinear Math. Phys., 11 (2004), 480.  doi: 10.2991/jnmp.2004.11.4.5.  Google Scholar

[26]

S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics,, Springer-Verlag, (1999).   Google Scholar

[27]

J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere,, J. Geom. Phys., 57 (2007), 2049.  doi: 10.1016/j.geomphys.2007.05.003.  Google Scholar

[28]

J. Lenells, G. Misiołek and F. Tiǧlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions,, Comm. Math. Phys., 299 (2010), 129.  doi: 10.1007/s00220-010-1069-9.  Google Scholar

[29]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[30]

J. Milnor, Remarks on infinite-dimensional Lie groups,, in Relativity, (1984), 1007.   Google Scholar

[31]

G. Misiołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[32]

G. Misiołek, Classical solutions of the periodic Camassa-Holm equation,, Geom. Funct. Anal., 12 (2002), 1080.  doi: 10.1007/PL00012648.  Google Scholar

[33]

S. Nag and D. Sullivan, Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle,, Osaka J. Math., 32 (1995), 1.   Google Scholar

[34]

P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics,, 2nd edition, (1993).  doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

H. Poincaré, Sur une nouvelle forme des équations de la mécanique,, C.R. Acad. Sci., 132 (1901), 369.   Google Scholar

[37]

S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics,, J. Funct. Anal., 160 (1998), 337.  doi: 10.1006/jfan.1998.3335.  Google Scholar

[38]

L. A. Takhtajan and L.-P. Teo, Weil-Petersson metric on the universal Teichmüller space,, Mem. Amer. Math. Soc., 183 (2006).  doi: 10.1090/memo/0861.  Google Scholar

[39]

F. Tiǧlay and C. Vizman, Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications,, Lett. Math. Phys., 97 (2011), 45.  doi: 10.1007/s11005-011-0464-2.  Google Scholar

[40]

H. Triebel, Theory of Function Spaces,, Birkhäuser Boston, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[41]

M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric,, J. Nonlinear Math. Phys., 17 (2010), 7.  doi: 10.1142/S1402925110000544.  Google Scholar

[42]

Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation,, SIAM J. Math. Anal., 36 (2004), 272.  doi: 10.1137/S0036141003425672.  Google Scholar

show all references

References:
[1]

V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits,, Ann. Inst. Fourier (Grenoble), 16 (1966), 319.  doi: 10.5802/aif.233.  Google Scholar

[2]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group,, Ann. Global Anal. Geom., 44 (2013), 5.  doi: 10.1007/s10455-012-9353-x.  Google Scholar

[3]

A. Bressan and A. Constantin, Global solutions of the Hunter-Saxton equation,, SIAM J. Math. Anal., 37 (2005), 996.  doi: 10.1137/050623036.  Google Scholar

[4]

M. Bruveris, The energy functional on the Virasoro-Bott group with the $L^{2}$-metric has no local minima,, Ann. Global Anal. Geom., 43 (2013), 385.  doi: 10.1007/s10455-012-9350-0.  Google Scholar

[5]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.  doi: 10.1103/PhysRevLett.71.1661.  Google Scholar

[6]

A. Constantin and B. Kolev, On the geometric approach to the motion of inertial mechanical systems,, J. Phys. A, 35 (2002).  doi: 10.1088/0305-4470/35/32/201.  Google Scholar

[7]

A. Constantin and B. Kolev, Geodesic flow on the diffeomorphism group of the circle,, Comment. Math. Helv., 78 (2003), 787.  doi: 10.1007/s00014-003-0785-6.  Google Scholar

[8]

P. Constantin, P. D. Lax and A. Majda, A simple one-dimensional model for the three-dimensional vorticity equation,, Comm. Pure Appl. Math., 38 (1985), 715.  doi: 10.1002/cpa.3160380605.  Google Scholar

[9]

D. G. Ebin and J. E. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102.  doi: 10.2307/1970699.  Google Scholar

[10]

J. Escher and B. Kolev, The Degasperis-Procesi equation as a non-metric Euler equation,, Math. Z., 269 (2011), 1137.  doi: 10.1007/s00209-010-0778-2.  Google Scholar

[11]

J. Escher, B. Kolev and M. Wunsch, The geometry of a vorticity model equation,, Commun. Pure Appl. Anal., 11 (2012), 1407.  doi: 10.3934/cpaa.2012.11.1407.  Google Scholar

[12]

J. Escher and M. Wunsch, Restrictions on the geometry of the periodic vorticity equation,, Communications in Contemporary Mathematics, 14 (2012).  doi: 10.1142/S0219199712500162.  Google Scholar

[13]

L. P. Euler, Du mouvement de rotation des corps solides autour d'un axe variable,, Mémoires de l'académie des sciences de Berlin, 14 (1765), 154.   Google Scholar

[14]

A. S. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformations and hereditary symmetries,, Phys. D, 4 (): 47.  doi: 10.1016/0167-2789(81)90004-X.  Google Scholar

[15]

F. Gay-Balmaz, Infinite Dimensional Geodesic Flows and the Universal Teichmüller Space,, PhD thesis, (2009).   Google Scholar

[16]

E. Grong, I. Markina and A. Vasil'ev, Sub-Riemannian geometry on infinite-dimensional manifolds,, ArXiv e-prints, ().  doi: 10.1007/s12220-014-9523-0.  Google Scholar

[17]

E. Grong, I. Markina and A. Vasil'ev, Sub-Riemannian structures corresponding to Kählerian metrics on the universal Teichmüller space and curve,, ArXiv e-prints, ().   Google Scholar

[18]

L. Guieu and C. Roger, L'algèbre et le Groupe de Virasoro,, Les Publications CRM, (2007).   Google Scholar

[19]

R. S. Hamilton, The inverse function theorem of Nash and Moser,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65.  doi: 10.1090/S0273-0979-1982-15004-2.  Google Scholar

[20]

D. D. Holm, J. E. E. Marsden and T. S. Ratiu, The Euler-Poincaré equations and semidirect products with applications to continuum theories,, Adv. Math., 137 (1998), 1.  doi: 10.1006/aima.1998.1721.  Google Scholar

[21]

J. K. Hunter and R. Saxton, Dynamics of director fields,, SIAM J. Appl. Math., 51 (1991), 1498.  doi: 10.1137/0151075.  Google Scholar

[22]

H. Inci, T. Kappeler and P. Topalov, On the Regularity of the Composition of Diffeomorphisms, vol. 226 of Memoirs of the American Mathematical Society,, 1st edition, (2013).  doi: 10.1090/S0065-9266-2013-00676-4.  Google Scholar

[23]

B. Khesin, J. Lenells and G. Misiołek, Generalized Hunter-Saxton equation and the geometry of the group of circle diffeomorphisms,, Math. Ann., 342 (2008), 617.  doi: 10.1007/s00208-008-0250-3.  Google Scholar

[24]

B. Khesin and G. Misiołek, Euler equations on homogeneous spaces and Virasoro orbits,, Adv. Math., 176 (2003), 116.  doi: 10.1016/S0001-8708(02)00063-4.  Google Scholar

[25]

B. Kolev, Lie groups and mechanics: An introduction,, J. Nonlinear Math. Phys., 11 (2004), 480.  doi: 10.2991/jnmp.2004.11.4.5.  Google Scholar

[26]

S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics,, Springer-Verlag, (1999).   Google Scholar

[27]

J. Lenells, The Hunter-Saxton equation describes the geodesic flow on a sphere,, J. Geom. Phys., 57 (2007), 2049.  doi: 10.1016/j.geomphys.2007.05.003.  Google Scholar

[28]

J. Lenells, G. Misiołek and F. Tiǧlay, Integrable evolution equations on spaces of tensor densities and their peakon solutions,, Comm. Math. Phys., 299 (2010), 129.  doi: 10.1007/s00220-010-1069-9.  Google Scholar

[29]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217.   Google Scholar

[30]

J. Milnor, Remarks on infinite-dimensional Lie groups,, in Relativity, (1984), 1007.   Google Scholar

[31]

G. Misiołek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203.  doi: 10.1016/S0393-0440(97)00010-7.  Google Scholar

[32]

G. Misiołek, Classical solutions of the periodic Camassa-Holm equation,, Geom. Funct. Anal., 12 (2002), 1080.  doi: 10.1007/PL00012648.  Google Scholar

[33]

S. Nag and D. Sullivan, Teichmüller theory and the universal period mapping via quantum calculus and the $H^{1/2}$ space on the circle,, Osaka J. Math., 32 (1995), 1.   Google Scholar

[34]

P. J. Olver, Applications of Lie Groups to Differential Equations, vol. 107 of Graduate Texts in Mathematics,, 2nd edition, (1993).  doi: 10.1007/978-1-4612-4350-2.  Google Scholar

[35]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, Springer-Verlag, (1983).  doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[36]

H. Poincaré, Sur une nouvelle forme des équations de la mécanique,, C.R. Acad. Sci., 132 (1901), 369.   Google Scholar

[37]

S. Shkoller, Geometry and curvature of diffeomorphism groups with $H^1$ metric and mean hydrodynamics,, J. Funct. Anal., 160 (1998), 337.  doi: 10.1006/jfan.1998.3335.  Google Scholar

[38]

L. A. Takhtajan and L.-P. Teo, Weil-Petersson metric on the universal Teichmüller space,, Mem. Amer. Math. Soc., 183 (2006).  doi: 10.1090/memo/0861.  Google Scholar

[39]

F. Tiǧlay and C. Vizman, Generalized Euler-Poincaré equations on Lie groups and homogeneous spaces, orbit invariants and applications,, Lett. Math. Phys., 97 (2011), 45.  doi: 10.1007/s11005-011-0464-2.  Google Scholar

[40]

H. Triebel, Theory of Function Spaces,, Birkhäuser Boston, (1983).  doi: 10.1007/978-3-0346-0416-1.  Google Scholar

[41]

M. Wunsch, On the geodesic flow on the group of diffeomorphisms of the circle with a fractional Sobolev right-invariant metric,, J. Nonlinear Math. Phys., 17 (2010), 7.  doi: 10.1142/S1402925110000544.  Google Scholar

[42]

Z. Yin, On the structure of solutions to the periodic Hunter-Saxton equation,, SIAM J. Math. Anal., 36 (2004), 272.  doi: 10.1137/S0036141003425672.  Google Scholar

[1]

Alexandre B. Simas, Fábio J. Valentim. $W$-Sobolev spaces: Higher order and regularity. Communications on Pure & Applied Analysis, 2015, 14 (2) : 597-607. doi: 10.3934/cpaa.2015.14.597

[2]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[3]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[4]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[5]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[6]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[7]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[8]

Andrea Cianchi, Adele Ferone. Improving sharp Sobolev type inequalities by optimal remainder gradient norms. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1363-1386. doi: 10.3934/cpaa.2012.11.1363

[9]

Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067

[10]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[11]

Shihu Li, Wei Liu, Yingchao Xie. Large deviations for stochastic 3D Leray-$ \alpha $ model with fractional dissipation. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2491-2509. doi: 10.3934/cpaa.2019113

[12]

Qian Liu. The lower bounds on the second-order nonlinearity of three classes of Boolean functions. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2020136

[13]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[14]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[15]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[16]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[17]

Kaifang Liu, Lunji Song, Shan Zhao. A new over-penalized weak galerkin method. Part Ⅰ: Second-order elliptic problems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2411-2428. doi: 10.3934/dcdsb.2020184

[18]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[19]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[20]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (74)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]