September  2014, 6(3): 373-415. doi: 10.3934/jgm.2014.6.373

Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies

1. 

Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UFR des Sciences et Techniques, 16, route de Gray, F-25030 Besançon cedex, France

2. 

Centre National de la Recherche Scientifique, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UFR des Sciences et Techniques, 16, route de Gray, F-25030 Besançon cedex

3. 

Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka, 01601 Kyiv, Ukraine

Received  November 2013 Revised  June 2014 Published  September 2014

This work studies the symmetries, the associated momentum map, and relative equilibria of a mechanical system consisting of a small axisymmetric magnetic body-dipole in an also axisymmetric external magnetic field that additionally exhibits a mirror symmetry; we call this system the ``orbitron". We study the nonlinear stability of a branch of equatorial relative equilibria using the energy-momentum method and we provide sufficient conditions for their $\mathbb{T}^2$--stability that complete partial stability relations already existing in the literature. These stability prescriptions are explicitly written down in terms of some of the field parameters, which can be used in the design of stable solutions. We propose new linear methods to determine instability regions in the context of relative equilibria that allow us to conclude the sharpness of some of the nonlinear stability conditions obtained.
Citation: Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).   Google Scholar

[2]

J. Cees van der Meer, The Hamiltonian Hopf Bifurcation,, Springer-Verlag, (1985).  doi: 10.1007/BFb0080357.  Google Scholar

[3]

M. Dellnitz, I. Melbourne and J. E. Marsden, Generic bifurcation of Hamiltonian vector fields with symmetry,, Nonlinearity, 5 (1992), 979.  doi: 10.1088/0951-7715/5/4/008.  Google Scholar

[4]

H. R. Dullin, Poisson integrator for symmetric rigid bodies,, Regular and Chaotic Dynamics, 9 (2004), 255.  doi: 10.1070/RD2004v009n03ABEH000279.  Google Scholar

[5]

H. R. Dullin and R. W. Easton, Stability of levitrons,, Physica D, 126 (1999), 1.  doi: 10.1016/S0167-2789(98)00251-6.  Google Scholar

[6]

F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Archive for Rational Mechanics and Analysis, 158 (2001), 259.  doi: 10.1007/PL00004245.  Google Scholar

[7]

V. Guillemin and S. Sternberg, A normal form for the momentum map,, in Differential Geometric Methods in Mathematical Physics (ed. S. Sternberg), (1984), 161.   Google Scholar

[8]

R. Harrigan, Levitation device,, US patent, (1983).   Google Scholar

[9]

V. V. Kozorez, About a problem of two magnets,, Bull. of the Ac. of Sc. of USSR. Series: Mechanics of a Rigid Body (in Russian), 3 (1974), 29.   Google Scholar

[10]

V. V. Kozorez, Dynamic Systems of Free Magnetically Interacting Bodies, (Russian), Naukova dumka, (1981).   Google Scholar

[11]

N. E. Leonard, Stability of a bottom-heavy underwater vehicle,, Automatica, 33 (1997), 331.  doi: 10.1016/S0005-1098(96)00176-8.  Google Scholar

[12]

R. Krechetnikov and J. E. Marsden, On destabilizing effects of two fundamental non-conservative forces,, Physica D, 214 (2006), 25.  doi: 10.1016/j.physd.2005.12.003.  Google Scholar

[13]

F. Laurent-Polz, Point vortices on the sphere: A case with opposite vorticities,, Nonlinearity, 15 (2002), 143.  doi: 10.1088/0951-7715/15/1/307.  Google Scholar

[14]

F. Laurent-Polz, J. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, Journal of Geometric Mechanics, 3 (2011), 439.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[15]

N. E. Leonard and J. E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry,, Physica D, 105 (1997), 130.  doi: 10.1016/S0167-2789(97)83390-8.  Google Scholar

[16]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[17]

D. Lewis, Stacked Lagrange tops,, Journal of Nonlinear Science, 8 (1998), 63.  doi: 10.1007/s003329900044.  Google Scholar

[18]

D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden, The heavy top: A geometric treatment,, Nonlinearity, 5 (1992), 1.  doi: 10.1088/0951-7715/5/1/001.  Google Scholar

[19]

C. Lim, J. A. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[20]

C.-M. Marle, Le voisinage d'une orbite d'une action hamiltonienne d'un groupe de Lie,, Séminaire Sud-Rhodanien de Géométrie II, (1984), 19.   Google Scholar

[21]

C.-M. Marle, Modéle d'action hamiltonienne d'un groupe the Lie sur une variété symplectique,, Rend. Sem. Mat. Univers. Politecn. Torino, 43 (1985), 227.   Google Scholar

[22]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Reports on Mathematical Physics, 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[23]

K. R. Meyer, Symmetries and integrals in mechanics,, in Dynamical Systems (ed. M. M. Peixoto), (1973), 259.   Google Scholar

[24]

J. A. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.  doi: 10.1016/S0764-4442(99)80389-9.  Google Scholar

[25]

J. A. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[26]

J. A. Montaldi and R. M. Roberts, Relative equilibria of molecules,, Journal of Nonlinear Science, 9 (1999), 53.  doi: 10.1007/s003329900064.  Google Scholar

[27]

J. A. Montaldi, R. M. Roberts and I. N. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems,, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[28]

J. Montaldi and M. Rodríguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy,, Nonlinearity, 24 (2011), 2777.  doi: 10.1088/0951-7715/24/10/007.  Google Scholar

[29]

J.-P. Ortega, Symmetry, Reduction, and Stability in Hamiltonian Systems,, Ph.D thesis, (1998).   Google Scholar

[30]

J.-P. Ortega and T. S. Ratiu, A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems,, Journal of Geometry and Physics, 32 (1999), 131.  doi: 10.1016/S0393-0440(99)00025-X.  Google Scholar

[31]

J.-P. Ortega and T. S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry,, Journal of Geometry and Physics, 32 (1999), 160.  doi: 10.1016/S0393-0440(99)00024-8.  Google Scholar

[32]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[33]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, Birkhauser Verlag, (2004).  doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[34]

J.-P. Ortega and T. S. Ratiu, The reduced spaces of a symplectic Lie group action,, Annals of Global Analysis and Geometry, 30 (2006), 335.  doi: 10.1007/s10455-006-9017-9.  Google Scholar

[35]

J.-P. Ortega and T. S. Ratiu, The stratified spaces of a symplectic Lie group action,, Reports on Mathematical Physics, 58 (2006), 51.  doi: 10.1016/S0034-4877(06)80040-6.  Google Scholar

[36]

G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, Journal of Geometry and Physics, 9 (1992), 111.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[37]

G. W. Patrick, Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift,, Journal of Nonlinear Science, 5 (1995), 373.  doi: 10.1007/BF01212907.  Google Scholar

[38]

G. W. Patrick, Two Axially Symmetric Coupled Rigid Bodies: Relative Equilibria, Stability, Bifurcations, and a Momentum Preserving Symplectic Integrator,, Ph.D thesis, (1995).   Google Scholar

[39]

G. W. Patrick, M. Roberts and C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods,, Archive for Rational Mechanics and Analysis, 174 (2004), 301.  doi: 10.1007/s00205-004-0322-9.  Google Scholar

[40]

S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria,, Journal of Mathematical Physics, 39 (1998), 5894.  doi: 10.1063/1.532602.  Google Scholar

[41]

M. Roberts, C. Wulff and J. S. W. Lamb, Hamiltonian systems near relative equilibria,, Journal of Differential Equations, 179 (2002), 562.  doi: 10.1006/jdeq.2001.4045.  Google Scholar

[42]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.  doi: 10.1088/0951-7715/19/4/005.  Google Scholar

[43]

M. Rodríguez-Olmos and M. E. Sousa-Dias, Nonlinear Stability of Riemann Ellipsoids with Symmetric Configurations,, Journal of Nonlinear Science, 19 (2009), 179.  doi: 10.1007/s00332-008-9032-z.  Google Scholar

[44]

J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.  doi: 10.1007/BF01881678.  Google Scholar

[45]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Annals of Mathematics, 134 (1991), 375.  doi: 10.2307/2944350.  Google Scholar

[46]

W. R. Smythe, Static and Dynamic Electricity,, McGraw-Hill, (1939).   Google Scholar

[47]

S. S. Zub, Research into orbital motion stability in system of two magnetically interacting bodies, preprint,, , (2012).   Google Scholar

[48]

S. S. Zub, Stable orbital motion of magnetic dipole in the field of permanent magnets,, Physica D, 275 (2014), 67.  doi: 10.1016/j.physd.2014.02.007.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).   Google Scholar

[2]

J. Cees van der Meer, The Hamiltonian Hopf Bifurcation,, Springer-Verlag, (1985).  doi: 10.1007/BFb0080357.  Google Scholar

[3]

M. Dellnitz, I. Melbourne and J. E. Marsden, Generic bifurcation of Hamiltonian vector fields with symmetry,, Nonlinearity, 5 (1992), 979.  doi: 10.1088/0951-7715/5/4/008.  Google Scholar

[4]

H. R. Dullin, Poisson integrator for symmetric rigid bodies,, Regular and Chaotic Dynamics, 9 (2004), 255.  doi: 10.1070/RD2004v009n03ABEH000279.  Google Scholar

[5]

H. R. Dullin and R. W. Easton, Stability of levitrons,, Physica D, 126 (1999), 1.  doi: 10.1016/S0167-2789(98)00251-6.  Google Scholar

[6]

F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Archive for Rational Mechanics and Analysis, 158 (2001), 259.  doi: 10.1007/PL00004245.  Google Scholar

[7]

V. Guillemin and S. Sternberg, A normal form for the momentum map,, in Differential Geometric Methods in Mathematical Physics (ed. S. Sternberg), (1984), 161.   Google Scholar

[8]

R. Harrigan, Levitation device,, US patent, (1983).   Google Scholar

[9]

V. V. Kozorez, About a problem of two magnets,, Bull. of the Ac. of Sc. of USSR. Series: Mechanics of a Rigid Body (in Russian), 3 (1974), 29.   Google Scholar

[10]

V. V. Kozorez, Dynamic Systems of Free Magnetically Interacting Bodies, (Russian), Naukova dumka, (1981).   Google Scholar

[11]

N. E. Leonard, Stability of a bottom-heavy underwater vehicle,, Automatica, 33 (1997), 331.  doi: 10.1016/S0005-1098(96)00176-8.  Google Scholar

[12]

R. Krechetnikov and J. E. Marsden, On destabilizing effects of two fundamental non-conservative forces,, Physica D, 214 (2006), 25.  doi: 10.1016/j.physd.2005.12.003.  Google Scholar

[13]

F. Laurent-Polz, Point vortices on the sphere: A case with opposite vorticities,, Nonlinearity, 15 (2002), 143.  doi: 10.1088/0951-7715/15/1/307.  Google Scholar

[14]

F. Laurent-Polz, J. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, Journal of Geometric Mechanics, 3 (2011), 439.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[15]

N. E. Leonard and J. E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry,, Physica D, 105 (1997), 130.  doi: 10.1016/S0167-2789(97)83390-8.  Google Scholar

[16]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[17]

D. Lewis, Stacked Lagrange tops,, Journal of Nonlinear Science, 8 (1998), 63.  doi: 10.1007/s003329900044.  Google Scholar

[18]

D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden, The heavy top: A geometric treatment,, Nonlinearity, 5 (1992), 1.  doi: 10.1088/0951-7715/5/1/001.  Google Scholar

[19]

C. Lim, J. A. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[20]

C.-M. Marle, Le voisinage d'une orbite d'une action hamiltonienne d'un groupe de Lie,, Séminaire Sud-Rhodanien de Géométrie II, (1984), 19.   Google Scholar

[21]

C.-M. Marle, Modéle d'action hamiltonienne d'un groupe the Lie sur une variété symplectique,, Rend. Sem. Mat. Univers. Politecn. Torino, 43 (1985), 227.   Google Scholar

[22]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Reports on Mathematical Physics, 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[23]

K. R. Meyer, Symmetries and integrals in mechanics,, in Dynamical Systems (ed. M. M. Peixoto), (1973), 259.   Google Scholar

[24]

J. A. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.  doi: 10.1016/S0764-4442(99)80389-9.  Google Scholar

[25]

J. A. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[26]

J. A. Montaldi and R. M. Roberts, Relative equilibria of molecules,, Journal of Nonlinear Science, 9 (1999), 53.  doi: 10.1007/s003329900064.  Google Scholar

[27]

J. A. Montaldi, R. M. Roberts and I. N. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems,, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[28]

J. Montaldi and M. Rodríguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy,, Nonlinearity, 24 (2011), 2777.  doi: 10.1088/0951-7715/24/10/007.  Google Scholar

[29]

J.-P. Ortega, Symmetry, Reduction, and Stability in Hamiltonian Systems,, Ph.D thesis, (1998).   Google Scholar

[30]

J.-P. Ortega and T. S. Ratiu, A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems,, Journal of Geometry and Physics, 32 (1999), 131.  doi: 10.1016/S0393-0440(99)00025-X.  Google Scholar

[31]

J.-P. Ortega and T. S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry,, Journal of Geometry and Physics, 32 (1999), 160.  doi: 10.1016/S0393-0440(99)00024-8.  Google Scholar

[32]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[33]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, Birkhauser Verlag, (2004).  doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[34]

J.-P. Ortega and T. S. Ratiu, The reduced spaces of a symplectic Lie group action,, Annals of Global Analysis and Geometry, 30 (2006), 335.  doi: 10.1007/s10455-006-9017-9.  Google Scholar

[35]

J.-P. Ortega and T. S. Ratiu, The stratified spaces of a symplectic Lie group action,, Reports on Mathematical Physics, 58 (2006), 51.  doi: 10.1016/S0034-4877(06)80040-6.  Google Scholar

[36]

G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, Journal of Geometry and Physics, 9 (1992), 111.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[37]

G. W. Patrick, Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift,, Journal of Nonlinear Science, 5 (1995), 373.  doi: 10.1007/BF01212907.  Google Scholar

[38]

G. W. Patrick, Two Axially Symmetric Coupled Rigid Bodies: Relative Equilibria, Stability, Bifurcations, and a Momentum Preserving Symplectic Integrator,, Ph.D thesis, (1995).   Google Scholar

[39]

G. W. Patrick, M. Roberts and C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods,, Archive for Rational Mechanics and Analysis, 174 (2004), 301.  doi: 10.1007/s00205-004-0322-9.  Google Scholar

[40]

S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria,, Journal of Mathematical Physics, 39 (1998), 5894.  doi: 10.1063/1.532602.  Google Scholar

[41]

M. Roberts, C. Wulff and J. S. W. Lamb, Hamiltonian systems near relative equilibria,, Journal of Differential Equations, 179 (2002), 562.  doi: 10.1006/jdeq.2001.4045.  Google Scholar

[42]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.  doi: 10.1088/0951-7715/19/4/005.  Google Scholar

[43]

M. Rodríguez-Olmos and M. E. Sousa-Dias, Nonlinear Stability of Riemann Ellipsoids with Symmetric Configurations,, Journal of Nonlinear Science, 19 (2009), 179.  doi: 10.1007/s00332-008-9032-z.  Google Scholar

[44]

J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.  doi: 10.1007/BF01881678.  Google Scholar

[45]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Annals of Mathematics, 134 (1991), 375.  doi: 10.2307/2944350.  Google Scholar

[46]

W. R. Smythe, Static and Dynamic Electricity,, McGraw-Hill, (1939).   Google Scholar

[47]

S. S. Zub, Research into orbital motion stability in system of two magnetically interacting bodies, preprint,, , (2012).   Google Scholar

[48]

S. S. Zub, Stable orbital motion of magnetic dipole in the field of permanent magnets,, Physica D, 275 (2014), 67.  doi: 10.1016/j.physd.2014.02.007.  Google Scholar

[1]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[2]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[3]

Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045

[4]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[5]

Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020406

[6]

Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2021001

[7]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[8]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[9]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[10]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[11]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[12]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[13]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[14]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[15]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[16]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[17]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[18]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[19]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (2)

[Back to Top]