-
Previous Article
Poisson structures for two nonholonomic systems with partially reduced symmetries
- JGM Home
- This Issue
-
Next Article
Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle
Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies
1. | Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UFR des Sciences et Techniques, 16, route de Gray, F-25030 Besançon cedex, France |
2. | Centre National de la Recherche Scientifique, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UFR des Sciences et Techniques, 16, route de Gray, F-25030 Besançon cedex |
3. | Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka, 01601 Kyiv, Ukraine |
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).
|
[2] |
J. Cees van der Meer, The Hamiltonian Hopf Bifurcation,, Springer-Verlag, (1985).
doi: 10.1007/BFb0080357. |
[3] |
M. Dellnitz, I. Melbourne and J. E. Marsden, Generic bifurcation of Hamiltonian vector fields with symmetry,, Nonlinearity, 5 (1992), 979.
doi: 10.1088/0951-7715/5/4/008. |
[4] |
H. R. Dullin, Poisson integrator for symmetric rigid bodies,, Regular and Chaotic Dynamics, 9 (2004), 255.
doi: 10.1070/RD2004v009n03ABEH000279. |
[5] |
H. R. Dullin and R. W. Easton, Stability of levitrons,, Physica D, 126 (1999), 1.
doi: 10.1016/S0167-2789(98)00251-6. |
[6] |
F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Archive for Rational Mechanics and Analysis, 158 (2001), 259.
doi: 10.1007/PL00004245. |
[7] |
V. Guillemin and S. Sternberg, A normal form for the momentum map,, in Differential Geometric Methods in Mathematical Physics (ed. S. Sternberg), (1984), 161.
|
[8] |
R. Harrigan, Levitation device,, US patent, (1983). Google Scholar |
[9] |
V. V. Kozorez, About a problem of two magnets,, Bull. of the Ac. of Sc. of USSR. Series: Mechanics of a Rigid Body (in Russian), 3 (1974), 29. Google Scholar |
[10] |
V. V. Kozorez, Dynamic Systems of Free Magnetically Interacting Bodies, (Russian), Naukova dumka, (1981). Google Scholar |
[11] |
N. E. Leonard, Stability of a bottom-heavy underwater vehicle,, Automatica, 33 (1997), 331.
doi: 10.1016/S0005-1098(96)00176-8. |
[12] |
R. Krechetnikov and J. E. Marsden, On destabilizing effects of two fundamental non-conservative forces,, Physica D, 214 (2006), 25.
doi: 10.1016/j.physd.2005.12.003. |
[13] |
F. Laurent-Polz, Point vortices on the sphere: A case with opposite vorticities,, Nonlinearity, 15 (2002), 143.
doi: 10.1088/0951-7715/15/1/307. |
[14] |
F. Laurent-Polz, J. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, Journal of Geometric Mechanics, 3 (2011), 439.
doi: 10.3934/jgm.2011.3.439. |
[15] |
N. E. Leonard and J. E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry,, Physica D, 105 (1997), 130.
doi: 10.1016/S0167-2789(97)83390-8. |
[16] |
E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.
doi: 10.1088/0951-7715/11/6/012. |
[17] |
D. Lewis, Stacked Lagrange tops,, Journal of Nonlinear Science, 8 (1998), 63.
doi: 10.1007/s003329900044. |
[18] |
D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden, The heavy top: A geometric treatment,, Nonlinearity, 5 (1992), 1.
doi: 10.1088/0951-7715/5/1/001. |
[19] |
C. Lim, J. A. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97.
doi: 10.1016/S0167-2789(00)00167-6. |
[20] |
C.-M. Marle, Le voisinage d'une orbite d'une action hamiltonienne d'un groupe de Lie,, Séminaire Sud-Rhodanien de Géométrie II, (1984), 19.
|
[21] |
C.-M. Marle, Modéle d'action hamiltonienne d'un groupe the Lie sur une variété symplectique,, Rend. Sem. Mat. Univers. Politecn. Torino, 43 (1985), 227.
|
[22] |
J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Reports on Mathematical Physics, 5 (1974), 121.
doi: 10.1016/0034-4877(74)90021-4. |
[23] |
K. R. Meyer, Symmetries and integrals in mechanics,, in Dynamical Systems (ed. M. M. Peixoto), (1973), 259.
|
[24] |
J. A. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.
doi: 10.1016/S0764-4442(99)80389-9. |
[25] |
J. A. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449.
doi: 10.1088/0951-7715/10/2/009. |
[26] |
J. A. Montaldi and R. M. Roberts, Relative equilibria of molecules,, Journal of Nonlinear Science, 9 (1999), 53.
doi: 10.1007/s003329900064. |
[27] |
J. A. Montaldi, R. M. Roberts and I. N. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems,, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237.
doi: 10.1098/rsta.1988.0053. |
[28] |
J. Montaldi and M. Rodríguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy,, Nonlinearity, 24 (2011), 2777.
doi: 10.1088/0951-7715/24/10/007. |
[29] |
J.-P. Ortega, Symmetry, Reduction, and Stability in Hamiltonian Systems,, Ph.D thesis, (1998). Google Scholar |
[30] |
J.-P. Ortega and T. S. Ratiu, A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems,, Journal of Geometry and Physics, 32 (1999), 131.
doi: 10.1016/S0393-0440(99)00025-X. |
[31] |
J.-P. Ortega and T. S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry,, Journal of Geometry and Physics, 32 (1999), 160.
doi: 10.1016/S0393-0440(99)00024-8. |
[32] |
J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.
doi: 10.1088/0951-7715/12/3/315. |
[33] |
J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, Birkhauser Verlag, (2004).
doi: 10.1007/978-1-4757-3811-7. |
[34] |
J.-P. Ortega and T. S. Ratiu, The reduced spaces of a symplectic Lie group action,, Annals of Global Analysis and Geometry, 30 (2006), 335.
doi: 10.1007/s10455-006-9017-9. |
[35] |
J.-P. Ortega and T. S. Ratiu, The stratified spaces of a symplectic Lie group action,, Reports on Mathematical Physics, 58 (2006), 51.
doi: 10.1016/S0034-4877(06)80040-6. |
[36] |
G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, Journal of Geometry and Physics, 9 (1992), 111.
doi: 10.1016/0393-0440(92)90015-S. |
[37] |
G. W. Patrick, Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift,, Journal of Nonlinear Science, 5 (1995), 373.
doi: 10.1007/BF01212907. |
[38] |
G. W. Patrick, Two Axially Symmetric Coupled Rigid Bodies: Relative Equilibria, Stability, Bifurcations, and a Momentum Preserving Symplectic Integrator,, Ph.D thesis, (1995). Google Scholar |
[39] |
G. W. Patrick, M. Roberts and C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods,, Archive for Rational Mechanics and Analysis, 174 (2004), 301.
doi: 10.1007/s00205-004-0322-9. |
[40] |
S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria,, Journal of Mathematical Physics, 39 (1998), 5894.
doi: 10.1063/1.532602. |
[41] |
M. Roberts, C. Wulff and J. S. W. Lamb, Hamiltonian systems near relative equilibria,, Journal of Differential Equations, 179 (2002), 562.
doi: 10.1006/jdeq.2001.4045. |
[42] |
M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.
doi: 10.1088/0951-7715/19/4/005. |
[43] |
M. Rodríguez-Olmos and M. E. Sousa-Dias, Nonlinear Stability of Riemann Ellipsoids with Symmetric Configurations,, Journal of Nonlinear Science, 19 (2009), 179.
doi: 10.1007/s00332-008-9032-z. |
[44] |
J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.
doi: 10.1007/BF01881678. |
[45] |
R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Annals of Mathematics, 134 (1991), 375.
doi: 10.2307/2944350. |
[46] |
W. R. Smythe, Static and Dynamic Electricity,, McGraw-Hill, (1939). Google Scholar |
[47] |
S. S. Zub, Research into orbital motion stability in system of two magnetically interacting bodies, preprint,, , (2012). Google Scholar |
[48] |
S. S. Zub, Stable orbital motion of magnetic dipole in the field of permanent magnets,, Physica D, 275 (2014), 67.
doi: 10.1016/j.physd.2014.02.007. |
show all references
References:
[1] |
R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).
|
[2] |
J. Cees van der Meer, The Hamiltonian Hopf Bifurcation,, Springer-Verlag, (1985).
doi: 10.1007/BFb0080357. |
[3] |
M. Dellnitz, I. Melbourne and J. E. Marsden, Generic bifurcation of Hamiltonian vector fields with symmetry,, Nonlinearity, 5 (1992), 979.
doi: 10.1088/0951-7715/5/4/008. |
[4] |
H. R. Dullin, Poisson integrator for symmetric rigid bodies,, Regular and Chaotic Dynamics, 9 (2004), 255.
doi: 10.1070/RD2004v009n03ABEH000279. |
[5] |
H. R. Dullin and R. W. Easton, Stability of levitrons,, Physica D, 126 (1999), 1.
doi: 10.1016/S0167-2789(98)00251-6. |
[6] |
F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Archive for Rational Mechanics and Analysis, 158 (2001), 259.
doi: 10.1007/PL00004245. |
[7] |
V. Guillemin and S. Sternberg, A normal form for the momentum map,, in Differential Geometric Methods in Mathematical Physics (ed. S. Sternberg), (1984), 161.
|
[8] |
R. Harrigan, Levitation device,, US patent, (1983). Google Scholar |
[9] |
V. V. Kozorez, About a problem of two magnets,, Bull. of the Ac. of Sc. of USSR. Series: Mechanics of a Rigid Body (in Russian), 3 (1974), 29. Google Scholar |
[10] |
V. V. Kozorez, Dynamic Systems of Free Magnetically Interacting Bodies, (Russian), Naukova dumka, (1981). Google Scholar |
[11] |
N. E. Leonard, Stability of a bottom-heavy underwater vehicle,, Automatica, 33 (1997), 331.
doi: 10.1016/S0005-1098(96)00176-8. |
[12] |
R. Krechetnikov and J. E. Marsden, On destabilizing effects of two fundamental non-conservative forces,, Physica D, 214 (2006), 25.
doi: 10.1016/j.physd.2005.12.003. |
[13] |
F. Laurent-Polz, Point vortices on the sphere: A case with opposite vorticities,, Nonlinearity, 15 (2002), 143.
doi: 10.1088/0951-7715/15/1/307. |
[14] |
F. Laurent-Polz, J. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, Journal of Geometric Mechanics, 3 (2011), 439.
doi: 10.3934/jgm.2011.3.439. |
[15] |
N. E. Leonard and J. E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry,, Physica D, 105 (1997), 130.
doi: 10.1016/S0167-2789(97)83390-8. |
[16] |
E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.
doi: 10.1088/0951-7715/11/6/012. |
[17] |
D. Lewis, Stacked Lagrange tops,, Journal of Nonlinear Science, 8 (1998), 63.
doi: 10.1007/s003329900044. |
[18] |
D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden, The heavy top: A geometric treatment,, Nonlinearity, 5 (1992), 1.
doi: 10.1088/0951-7715/5/1/001. |
[19] |
C. Lim, J. A. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97.
doi: 10.1016/S0167-2789(00)00167-6. |
[20] |
C.-M. Marle, Le voisinage d'une orbite d'une action hamiltonienne d'un groupe de Lie,, Séminaire Sud-Rhodanien de Géométrie II, (1984), 19.
|
[21] |
C.-M. Marle, Modéle d'action hamiltonienne d'un groupe the Lie sur une variété symplectique,, Rend. Sem. Mat. Univers. Politecn. Torino, 43 (1985), 227.
|
[22] |
J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Reports on Mathematical Physics, 5 (1974), 121.
doi: 10.1016/0034-4877(74)90021-4. |
[23] |
K. R. Meyer, Symmetries and integrals in mechanics,, in Dynamical Systems (ed. M. M. Peixoto), (1973), 259.
|
[24] |
J. A. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.
doi: 10.1016/S0764-4442(99)80389-9. |
[25] |
J. A. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449.
doi: 10.1088/0951-7715/10/2/009. |
[26] |
J. A. Montaldi and R. M. Roberts, Relative equilibria of molecules,, Journal of Nonlinear Science, 9 (1999), 53.
doi: 10.1007/s003329900064. |
[27] |
J. A. Montaldi, R. M. Roberts and I. N. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems,, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237.
doi: 10.1098/rsta.1988.0053. |
[28] |
J. Montaldi and M. Rodríguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy,, Nonlinearity, 24 (2011), 2777.
doi: 10.1088/0951-7715/24/10/007. |
[29] |
J.-P. Ortega, Symmetry, Reduction, and Stability in Hamiltonian Systems,, Ph.D thesis, (1998). Google Scholar |
[30] |
J.-P. Ortega and T. S. Ratiu, A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems,, Journal of Geometry and Physics, 32 (1999), 131.
doi: 10.1016/S0393-0440(99)00025-X. |
[31] |
J.-P. Ortega and T. S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry,, Journal of Geometry and Physics, 32 (1999), 160.
doi: 10.1016/S0393-0440(99)00024-8. |
[32] |
J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.
doi: 10.1088/0951-7715/12/3/315. |
[33] |
J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, Birkhauser Verlag, (2004).
doi: 10.1007/978-1-4757-3811-7. |
[34] |
J.-P. Ortega and T. S. Ratiu, The reduced spaces of a symplectic Lie group action,, Annals of Global Analysis and Geometry, 30 (2006), 335.
doi: 10.1007/s10455-006-9017-9. |
[35] |
J.-P. Ortega and T. S. Ratiu, The stratified spaces of a symplectic Lie group action,, Reports on Mathematical Physics, 58 (2006), 51.
doi: 10.1016/S0034-4877(06)80040-6. |
[36] |
G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, Journal of Geometry and Physics, 9 (1992), 111.
doi: 10.1016/0393-0440(92)90015-S. |
[37] |
G. W. Patrick, Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift,, Journal of Nonlinear Science, 5 (1995), 373.
doi: 10.1007/BF01212907. |
[38] |
G. W. Patrick, Two Axially Symmetric Coupled Rigid Bodies: Relative Equilibria, Stability, Bifurcations, and a Momentum Preserving Symplectic Integrator,, Ph.D thesis, (1995). Google Scholar |
[39] |
G. W. Patrick, M. Roberts and C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods,, Archive for Rational Mechanics and Analysis, 174 (2004), 301.
doi: 10.1007/s00205-004-0322-9. |
[40] |
S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria,, Journal of Mathematical Physics, 39 (1998), 5894.
doi: 10.1063/1.532602. |
[41] |
M. Roberts, C. Wulff and J. S. W. Lamb, Hamiltonian systems near relative equilibria,, Journal of Differential Equations, 179 (2002), 562.
doi: 10.1006/jdeq.2001.4045. |
[42] |
M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.
doi: 10.1088/0951-7715/19/4/005. |
[43] |
M. Rodríguez-Olmos and M. E. Sousa-Dias, Nonlinear Stability of Riemann Ellipsoids with Symmetric Configurations,, Journal of Nonlinear Science, 19 (2009), 179.
doi: 10.1007/s00332-008-9032-z. |
[44] |
J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.
doi: 10.1007/BF01881678. |
[45] |
R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Annals of Mathematics, 134 (1991), 375.
doi: 10.2307/2944350. |
[46] |
W. R. Smythe, Static and Dynamic Electricity,, McGraw-Hill, (1939). Google Scholar |
[47] |
S. S. Zub, Research into orbital motion stability in system of two magnetically interacting bodies, preprint,, , (2012). Google Scholar |
[48] |
S. S. Zub, Stable orbital motion of magnetic dipole in the field of permanent magnets,, Physica D, 275 (2014), 67.
doi: 10.1016/j.physd.2014.02.007. |
[1] |
Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030 |
[2] |
Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316 |
[3] |
Lucio Damascelli, Filomena Pacella. Sectional symmetry of solutions of elliptic systems in cylindrical domains. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3305-3325. doi: 10.3934/dcds.2020045 |
[4] |
Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024 |
[5] |
Hua Shi, Xiang Zhang, Yuyan Zhang. Complex planar Hamiltonian systems: Linearization and dynamics. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020406 |
[6] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2021001 |
[7] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[8] |
Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561 |
[9] |
Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262 |
[10] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[11] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020407 |
[12] |
Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164 |
[13] |
Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020368 |
[14] |
Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176 |
[15] |
Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345 |
[16] |
Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172 |
[17] |
Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276 |
[18] |
Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020108 |
[19] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[20] |
Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020379 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]