September  2014, 6(3): 373-415. doi: 10.3934/jgm.2014.6.373

Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies

1. 

Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UFR des Sciences et Techniques, 16, route de Gray, F-25030 Besançon cedex, France

2. 

Centre National de la Recherche Scientifique, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UFR des Sciences et Techniques, 16, route de Gray, F-25030 Besançon cedex

3. 

Taras Shevchenko National University of Kyiv, 64, Volodymyrs'ka, 01601 Kyiv, Ukraine

Received  November 2013 Revised  June 2014 Published  September 2014

This work studies the symmetries, the associated momentum map, and relative equilibria of a mechanical system consisting of a small axisymmetric magnetic body-dipole in an also axisymmetric external magnetic field that additionally exhibits a mirror symmetry; we call this system the ``orbitron". We study the nonlinear stability of a branch of equatorial relative equilibria using the energy-momentum method and we provide sufficient conditions for their $\mathbb{T}^2$--stability that complete partial stability relations already existing in the literature. These stability prescriptions are explicitly written down in terms of some of the field parameters, which can be used in the design of stable solutions. We propose new linear methods to determine instability regions in the context of relative equilibria that allow us to conclude the sharpness of some of the nonlinear stability conditions obtained.
Citation: Lyudmila Grigoryeva, Juan-Pablo Ortega, Stanislav S. Zub. Stability of Hamiltonian relative equilibria in symmetric magnetically confined rigid bodies. Journal of Geometric Mechanics, 2014, 6 (3) : 373-415. doi: 10.3934/jgm.2014.6.373
References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).   Google Scholar

[2]

J. Cees van der Meer, The Hamiltonian Hopf Bifurcation,, Springer-Verlag, (1985).  doi: 10.1007/BFb0080357.  Google Scholar

[3]

M. Dellnitz, I. Melbourne and J. E. Marsden, Generic bifurcation of Hamiltonian vector fields with symmetry,, Nonlinearity, 5 (1992), 979.  doi: 10.1088/0951-7715/5/4/008.  Google Scholar

[4]

H. R. Dullin, Poisson integrator for symmetric rigid bodies,, Regular and Chaotic Dynamics, 9 (2004), 255.  doi: 10.1070/RD2004v009n03ABEH000279.  Google Scholar

[5]

H. R. Dullin and R. W. Easton, Stability of levitrons,, Physica D, 126 (1999), 1.  doi: 10.1016/S0167-2789(98)00251-6.  Google Scholar

[6]

F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Archive for Rational Mechanics and Analysis, 158 (2001), 259.  doi: 10.1007/PL00004245.  Google Scholar

[7]

V. Guillemin and S. Sternberg, A normal form for the momentum map,, in Differential Geometric Methods in Mathematical Physics (ed. S. Sternberg), (1984), 161.   Google Scholar

[8]

R. Harrigan, Levitation device,, US patent, (1983).   Google Scholar

[9]

V. V. Kozorez, About a problem of two magnets,, Bull. of the Ac. of Sc. of USSR. Series: Mechanics of a Rigid Body (in Russian), 3 (1974), 29.   Google Scholar

[10]

V. V. Kozorez, Dynamic Systems of Free Magnetically Interacting Bodies, (Russian), Naukova dumka, (1981).   Google Scholar

[11]

N. E. Leonard, Stability of a bottom-heavy underwater vehicle,, Automatica, 33 (1997), 331.  doi: 10.1016/S0005-1098(96)00176-8.  Google Scholar

[12]

R. Krechetnikov and J. E. Marsden, On destabilizing effects of two fundamental non-conservative forces,, Physica D, 214 (2006), 25.  doi: 10.1016/j.physd.2005.12.003.  Google Scholar

[13]

F. Laurent-Polz, Point vortices on the sphere: A case with opposite vorticities,, Nonlinearity, 15 (2002), 143.  doi: 10.1088/0951-7715/15/1/307.  Google Scholar

[14]

F. Laurent-Polz, J. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, Journal of Geometric Mechanics, 3 (2011), 439.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[15]

N. E. Leonard and J. E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry,, Physica D, 105 (1997), 130.  doi: 10.1016/S0167-2789(97)83390-8.  Google Scholar

[16]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[17]

D. Lewis, Stacked Lagrange tops,, Journal of Nonlinear Science, 8 (1998), 63.  doi: 10.1007/s003329900044.  Google Scholar

[18]

D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden, The heavy top: A geometric treatment,, Nonlinearity, 5 (1992), 1.  doi: 10.1088/0951-7715/5/1/001.  Google Scholar

[19]

C. Lim, J. A. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[20]

C.-M. Marle, Le voisinage d'une orbite d'une action hamiltonienne d'un groupe de Lie,, Séminaire Sud-Rhodanien de Géométrie II, (1984), 19.   Google Scholar

[21]

C.-M. Marle, Modéle d'action hamiltonienne d'un groupe the Lie sur une variété symplectique,, Rend. Sem. Mat. Univers. Politecn. Torino, 43 (1985), 227.   Google Scholar

[22]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Reports on Mathematical Physics, 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[23]

K. R. Meyer, Symmetries and integrals in mechanics,, in Dynamical Systems (ed. M. M. Peixoto), (1973), 259.   Google Scholar

[24]

J. A. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.  doi: 10.1016/S0764-4442(99)80389-9.  Google Scholar

[25]

J. A. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[26]

J. A. Montaldi and R. M. Roberts, Relative equilibria of molecules,, Journal of Nonlinear Science, 9 (1999), 53.  doi: 10.1007/s003329900064.  Google Scholar

[27]

J. A. Montaldi, R. M. Roberts and I. N. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems,, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[28]

J. Montaldi and M. Rodríguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy,, Nonlinearity, 24 (2011), 2777.  doi: 10.1088/0951-7715/24/10/007.  Google Scholar

[29]

J.-P. Ortega, Symmetry, Reduction, and Stability in Hamiltonian Systems,, Ph.D thesis, (1998).   Google Scholar

[30]

J.-P. Ortega and T. S. Ratiu, A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems,, Journal of Geometry and Physics, 32 (1999), 131.  doi: 10.1016/S0393-0440(99)00025-X.  Google Scholar

[31]

J.-P. Ortega and T. S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry,, Journal of Geometry and Physics, 32 (1999), 160.  doi: 10.1016/S0393-0440(99)00024-8.  Google Scholar

[32]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[33]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, Birkhauser Verlag, (2004).  doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[34]

J.-P. Ortega and T. S. Ratiu, The reduced spaces of a symplectic Lie group action,, Annals of Global Analysis and Geometry, 30 (2006), 335.  doi: 10.1007/s10455-006-9017-9.  Google Scholar

[35]

J.-P. Ortega and T. S. Ratiu, The stratified spaces of a symplectic Lie group action,, Reports on Mathematical Physics, 58 (2006), 51.  doi: 10.1016/S0034-4877(06)80040-6.  Google Scholar

[36]

G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, Journal of Geometry and Physics, 9 (1992), 111.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[37]

G. W. Patrick, Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift,, Journal of Nonlinear Science, 5 (1995), 373.  doi: 10.1007/BF01212907.  Google Scholar

[38]

G. W. Patrick, Two Axially Symmetric Coupled Rigid Bodies: Relative Equilibria, Stability, Bifurcations, and a Momentum Preserving Symplectic Integrator,, Ph.D thesis, (1995).   Google Scholar

[39]

G. W. Patrick, M. Roberts and C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods,, Archive for Rational Mechanics and Analysis, 174 (2004), 301.  doi: 10.1007/s00205-004-0322-9.  Google Scholar

[40]

S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria,, Journal of Mathematical Physics, 39 (1998), 5894.  doi: 10.1063/1.532602.  Google Scholar

[41]

M. Roberts, C. Wulff and J. S. W. Lamb, Hamiltonian systems near relative equilibria,, Journal of Differential Equations, 179 (2002), 562.  doi: 10.1006/jdeq.2001.4045.  Google Scholar

[42]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.  doi: 10.1088/0951-7715/19/4/005.  Google Scholar

[43]

M. Rodríguez-Olmos and M. E. Sousa-Dias, Nonlinear Stability of Riemann Ellipsoids with Symmetric Configurations,, Journal of Nonlinear Science, 19 (2009), 179.  doi: 10.1007/s00332-008-9032-z.  Google Scholar

[44]

J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.  doi: 10.1007/BF01881678.  Google Scholar

[45]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Annals of Mathematics, 134 (1991), 375.  doi: 10.2307/2944350.  Google Scholar

[46]

W. R. Smythe, Static and Dynamic Electricity,, McGraw-Hill, (1939).   Google Scholar

[47]

S. S. Zub, Research into orbital motion stability in system of two magnetically interacting bodies, preprint,, , (2012).   Google Scholar

[48]

S. S. Zub, Stable orbital motion of magnetic dipole in the field of permanent magnets,, Physica D, 275 (2014), 67.  doi: 10.1016/j.physd.2014.02.007.  Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, Foundations of Mechanics,, $2^{nd}$ edition, (1978).   Google Scholar

[2]

J. Cees van der Meer, The Hamiltonian Hopf Bifurcation,, Springer-Verlag, (1985).  doi: 10.1007/BFb0080357.  Google Scholar

[3]

M. Dellnitz, I. Melbourne and J. E. Marsden, Generic bifurcation of Hamiltonian vector fields with symmetry,, Nonlinearity, 5 (1992), 979.  doi: 10.1088/0951-7715/5/4/008.  Google Scholar

[4]

H. R. Dullin, Poisson integrator for symmetric rigid bodies,, Regular and Chaotic Dynamics, 9 (2004), 255.  doi: 10.1070/RD2004v009n03ABEH000279.  Google Scholar

[5]

H. R. Dullin and R. W. Easton, Stability of levitrons,, Physica D, 126 (1999), 1.  doi: 10.1016/S0167-2789(98)00251-6.  Google Scholar

[6]

F. Fassò and D. Lewis, Stability properties of the Riemann ellipsoids,, Archive for Rational Mechanics and Analysis, 158 (2001), 259.  doi: 10.1007/PL00004245.  Google Scholar

[7]

V. Guillemin and S. Sternberg, A normal form for the momentum map,, in Differential Geometric Methods in Mathematical Physics (ed. S. Sternberg), (1984), 161.   Google Scholar

[8]

R. Harrigan, Levitation device,, US patent, (1983).   Google Scholar

[9]

V. V. Kozorez, About a problem of two magnets,, Bull. of the Ac. of Sc. of USSR. Series: Mechanics of a Rigid Body (in Russian), 3 (1974), 29.   Google Scholar

[10]

V. V. Kozorez, Dynamic Systems of Free Magnetically Interacting Bodies, (Russian), Naukova dumka, (1981).   Google Scholar

[11]

N. E. Leonard, Stability of a bottom-heavy underwater vehicle,, Automatica, 33 (1997), 331.  doi: 10.1016/S0005-1098(96)00176-8.  Google Scholar

[12]

R. Krechetnikov and J. E. Marsden, On destabilizing effects of two fundamental non-conservative forces,, Physica D, 214 (2006), 25.  doi: 10.1016/j.physd.2005.12.003.  Google Scholar

[13]

F. Laurent-Polz, Point vortices on the sphere: A case with opposite vorticities,, Nonlinearity, 15 (2002), 143.  doi: 10.1088/0951-7715/15/1/307.  Google Scholar

[14]

F. Laurent-Polz, J. Montaldi and M. Roberts, Point vortices on the sphere: Stability of symmetric relative equilibria,, Journal of Geometric Mechanics, 3 (2011), 439.  doi: 10.3934/jgm.2011.3.439.  Google Scholar

[15]

N. E. Leonard and J. E. Marsden, Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry,, Physica D, 105 (1997), 130.  doi: 10.1016/S0167-2789(97)83390-8.  Google Scholar

[16]

E. Lerman and S. F. Singer, Stability and persistence of relative equilibria at singular values of the moment map,, Nonlinearity, 11 (1998), 1637.  doi: 10.1088/0951-7715/11/6/012.  Google Scholar

[17]

D. Lewis, Stacked Lagrange tops,, Journal of Nonlinear Science, 8 (1998), 63.  doi: 10.1007/s003329900044.  Google Scholar

[18]

D. Lewis, T. S. Ratiu, J. C. Simo and J. E. Marsden, The heavy top: A geometric treatment,, Nonlinearity, 5 (1992), 1.  doi: 10.1088/0951-7715/5/1/001.  Google Scholar

[19]

C. Lim, J. A. Montaldi and R. M. Roberts, Relative equilibria of point vortices on the sphere,, Physica D, 148 (2001), 97.  doi: 10.1016/S0167-2789(00)00167-6.  Google Scholar

[20]

C.-M. Marle, Le voisinage d'une orbite d'une action hamiltonienne d'un groupe de Lie,, Séminaire Sud-Rhodanien de Géométrie II, (1984), 19.   Google Scholar

[21]

C.-M. Marle, Modéle d'action hamiltonienne d'un groupe the Lie sur une variété symplectique,, Rend. Sem. Mat. Univers. Politecn. Torino, 43 (1985), 227.   Google Scholar

[22]

J. E. Marsden and A. Weinstein, Reduction of symplectic manifolds with symmetry,, Reports on Mathematical Physics, 5 (1974), 121.  doi: 10.1016/0034-4877(74)90021-4.  Google Scholar

[23]

K. R. Meyer, Symmetries and integrals in mechanics,, in Dynamical Systems (ed. M. M. Peixoto), (1973), 259.   Google Scholar

[24]

J. A. Montaldi, Persistance d'orbites périodiques relatives dans les systèmes hamiltoniens symétriques,, C. R. Acad. Sci. Paris Sér. I Math., 324 (1997), 553.  doi: 10.1016/S0764-4442(99)80389-9.  Google Scholar

[25]

J. A. Montaldi, Persistence and stability of relative equilibria,, Nonlinearity, 10 (1997), 449.  doi: 10.1088/0951-7715/10/2/009.  Google Scholar

[26]

J. A. Montaldi and R. M. Roberts, Relative equilibria of molecules,, Journal of Nonlinear Science, 9 (1999), 53.  doi: 10.1007/s003329900064.  Google Scholar

[27]

J. A. Montaldi, R. M. Roberts and I. N. Stewart, Periodic solutions near equilibria of symmetric Hamiltonian systems,, Phil. Trans. R. Soc. Lond. A, 325 (1988), 237.  doi: 10.1098/rsta.1988.0053.  Google Scholar

[28]

J. Montaldi and M. Rodríguez-Olmos, On the stability of Hamiltonian relative equilibria with non-trivial isotropy,, Nonlinearity, 24 (2011), 2777.  doi: 10.1088/0951-7715/24/10/007.  Google Scholar

[29]

J.-P. Ortega, Symmetry, Reduction, and Stability in Hamiltonian Systems,, Ph.D thesis, (1998).   Google Scholar

[30]

J.-P. Ortega and T. S. Ratiu, A Dirichlet criterion for the stability of periodic and relative periodic orbits in Hamiltonian systems,, Journal of Geometry and Physics, 32 (1999), 131.  doi: 10.1016/S0393-0440(99)00025-X.  Google Scholar

[31]

J.-P. Ortega and T. S. Ratiu, Non-linear stability of singular relative periodic orbits in Hamiltonian systems with symmetry,, Journal of Geometry and Physics, 32 (1999), 160.  doi: 10.1016/S0393-0440(99)00024-8.  Google Scholar

[32]

J.-P. Ortega and T. S. Ratiu, Stability of Hamiltonian relative equilibria,, Nonlinearity, 12 (1999), 693.  doi: 10.1088/0951-7715/12/3/315.  Google Scholar

[33]

J.-P. Ortega and T. S. Ratiu, Momentum Maps and Hamiltonian Reduction,, Birkhauser Verlag, (2004).  doi: 10.1007/978-1-4757-3811-7.  Google Scholar

[34]

J.-P. Ortega and T. S. Ratiu, The reduced spaces of a symplectic Lie group action,, Annals of Global Analysis and Geometry, 30 (2006), 335.  doi: 10.1007/s10455-006-9017-9.  Google Scholar

[35]

J.-P. Ortega and T. S. Ratiu, The stratified spaces of a symplectic Lie group action,, Reports on Mathematical Physics, 58 (2006), 51.  doi: 10.1016/S0034-4877(06)80040-6.  Google Scholar

[36]

G. W. Patrick, Relative equilibria in Hamiltonian systems: The dynamic interpretation of nonlinear stability on a reduced phase space,, Journal of Geometry and Physics, 9 (1992), 111.  doi: 10.1016/0393-0440(92)90015-S.  Google Scholar

[37]

G. W. Patrick, Relative equilibria of Hamiltonian systems with symmetry: Linearization, smoothness, and drift,, Journal of Nonlinear Science, 5 (1995), 373.  doi: 10.1007/BF01212907.  Google Scholar

[38]

G. W. Patrick, Two Axially Symmetric Coupled Rigid Bodies: Relative Equilibria, Stability, Bifurcations, and a Momentum Preserving Symplectic Integrator,, Ph.D thesis, (1995).   Google Scholar

[39]

G. W. Patrick, M. Roberts and C. Wulff, Stability of Poisson equilibria and Hamiltonian relative equilibria by energy methods,, Archive for Rational Mechanics and Analysis, 174 (2004), 301.  doi: 10.1007/s00205-004-0322-9.  Google Scholar

[40]

S. Pekarsky and J. E. Marsden, Point vortices on a sphere: Stability of relative equilibria,, Journal of Mathematical Physics, 39 (1998), 5894.  doi: 10.1063/1.532602.  Google Scholar

[41]

M. Roberts, C. Wulff and J. S. W. Lamb, Hamiltonian systems near relative equilibria,, Journal of Differential Equations, 179 (2002), 562.  doi: 10.1006/jdeq.2001.4045.  Google Scholar

[42]

M. Rodríguez-Olmos, Stability of relative equilibria with singular momentum values in simple mechanical systems,, Nonlinearity, 19 (2006), 853.  doi: 10.1088/0951-7715/19/4/005.  Google Scholar

[43]

M. Rodríguez-Olmos and M. E. Sousa-Dias, Nonlinear Stability of Riemann Ellipsoids with Symmetric Configurations,, Journal of Nonlinear Science, 19 (2009), 179.  doi: 10.1007/s00332-008-9032-z.  Google Scholar

[44]

J. C. Simo, D. Lewis and J. E. Marsden, Stability of relative equilibria. Part I: The reduced energy-momentum method,, Archive for Rational Mechanics and Analysis, 115 (1991), 15.  doi: 10.1007/BF01881678.  Google Scholar

[45]

R. Sjamaar and E. Lerman, Stratified symplectic spaces and reduction,, Annals of Mathematics, 134 (1991), 375.  doi: 10.2307/2944350.  Google Scholar

[46]

W. R. Smythe, Static and Dynamic Electricity,, McGraw-Hill, (1939).   Google Scholar

[47]

S. S. Zub, Research into orbital motion stability in system of two magnetically interacting bodies, preprint,, , (2012).   Google Scholar

[48]

S. S. Zub, Stable orbital motion of magnetic dipole in the field of permanent magnets,, Physica D, 275 (2014), 67.  doi: 10.1016/j.physd.2014.02.007.  Google Scholar

[1]

James Montaldi. Bifurcations of relative equilibria near zero momentum in Hamiltonian systems with spherical symmetry. Journal of Geometric Mechanics, 2014, 6 (2) : 237-260. doi: 10.3934/jgm.2014.6.237

[2]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[3]

Abed Bounemoura, Edouard Pennamen. Instability for a priori unstable Hamiltonian systems: A dynamical approach. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 753-793. doi: 10.3934/dcds.2012.32.753

[4]

Marian Gidea, Rafael De La Llave. Topological methods in the instability problem of Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 295-328. doi: 10.3934/dcds.2006.14.295

[5]

Pietro-Luciano Buono, Daniel C. Offin. Instability criterion for periodic solutions with spatio-temporal symmetries in Hamiltonian systems. Journal of Geometric Mechanics, 2017, 9 (4) : 439-457. doi: 10.3934/jgm.2017017

[6]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

[7]

Reinhard Racke. Instability of coupled systems with delay. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1753-1773. doi: 10.3934/cpaa.2012.11.1753

[8]

Ugo Boscain, Grégoire Charlot, Mario Sigalotti. Stability of planar nonlinear switched systems. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 415-432. doi: 10.3934/dcds.2006.15.415

[9]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations & Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[10]

Chunjiang Qian, Wei Lin, Wenting Zha. Generalized homogeneous systems with applications to nonlinear control: A survey. Mathematical Control & Related Fields, 2015, 5 (3) : 585-611. doi: 10.3934/mcrf.2015.5.585

[11]

Björn Augner, Birgit Jacob. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory, 2014, 3 (2) : 207-229. doi: 10.3934/eect.2014.3.207

[12]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[13]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[14]

Fuzhong Cong, Jialin Hong, Hongtian Li. Quasi-effective stability for nearly integrable Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 67-80. doi: 10.3934/dcdsb.2016.21.67

[15]

Luca Biasco, Luigi Chierchia. On the stability of some properly--degenerate Hamiltonian systems with two degrees of freedom. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 233-262. doi: 10.3934/dcds.2003.9.233

[16]

Chungen Liu. Minimal period estimates for brake orbits of nonlinear symmetric Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 337-355. doi: 10.3934/dcds.2010.27.337

[17]

Therese Mur, Hernan R. Henriquez. Relative controllability of linear systems of fractional order with delay. Mathematical Control & Related Fields, 2015, 5 (4) : 845-858. doi: 10.3934/mcrf.2015.5.845

[18]

Eduard Feireisl. Relative entropies in thermodynamics of complete fluid systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (9) : 3059-3080. doi: 10.3934/dcds.2012.32.3059

[19]

Xiaomin Zhou. Relative entropy dimension of topological dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6631-6642. doi: 10.3934/dcds.2019288

[20]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

[Back to Top]