\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Fluid-structure interaction in the Lagrange-Poincaré formalism: The Navier-Stokes and inviscid regimes

Abstract / Introduction Related Papers Cited by
  • In this paper, we derive the equations of motion for an elastic body interacting with a perfect fluid via the framework of Lagrange-Poincaré reduction. We model the combined fluid-structure system as a geodesic curve on the total space of a principal bundle on which a diffeomorphism group acts. After reduction by the diffeomorphism group we obtain the fluid-structure interactions where the fluid evolves by the inviscid fluid equations. Along the way, we describe various geometric structures appearing in fluid-structure interactions: principal connections, Lie groupoids, Lie algebroids, etc. We finish by introducing viscosity in our framework as an external force and adding the no-slip boundary condition. The result is a description of an elastic body immersed in a Navier-Stokes fluid as an externally forced Lagrange-Poincaré equation. Expressing fluid-structure interactions with Lagrange-Poincaré theory provides an alternative to the traditional description of the Navier-Stokes equations on an evolving domain.
    Mathematics Subject Classification: 76T99, 53Z05, 22A22, 22E70.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd edition, American Mathematical Society, 2000.

    [2]

    R. Abraham, J. E. Marsden and T. S. Ratiu, Manifolds, Tensor Analysis, and Applications, vol. 75 of Applied Mathematical Sciences, 3rd edition, Spinger, 2009.

    [3]

    V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits, Annales de l'Institut Fourier, 16 (1966), 316-361.doi: 10.5802/aif.233.

    [4]

    V. I. Arnold and B. A. Khesin, Topological Methods in Hydrodynamics, vol. 24 of Applied Mathematical Sciences, 125. Springer-Verlag, New York, 1998.

    [5]

    G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 1999.

    [6]

    H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian Reduction by Stages, Mem. Amer. Math. Soc., 152 (2001), x+108 pp.doi: 10.1090/memo/0722.

    [7]

    R. L. Fernandes and I. Struchiner, Lie algebroids and classification problems in geometry, São Paulo J. Math. Sci., 2 (2008), 263-283.

    [8]

    E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden and M. Desbrun, Geometric, variational discretization of continuum theories, Physica D: Nonlinear Phenomena, 240 (2011), 1724-1760.doi: 10.1016/j.physd.2011.07.011.

    [9]

    F. Gay-Balmaz and T. S. Ratiu, The geometric structure of complex fluids, Advances in Applied Mathematics, 42 (2009), 176-275.doi: 10.1016/j.aam.2008.06.002.

    [10]

    E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration, Structure Preserving Algorithms for Ordinary Differential Equations, vol. 31 of Series in Computational Mathematics, Springer Verlag, 2002.

    [11]

    H. O. Jacobs, T. S. Ratiu and M. Desbrun, On the coupling between an ideal fluid and immersed particles, Phys. D, 265 (2013), 40-56. arXiv:1208.6561v1doi: 10.1016/j.physd.2013.09.004.

    [12]

    E. Kanso, J. E. Marsden, C. W. Rowley and J. B. Melli-Huber, Locomotion of articulated bodies in a perfect fluid, Journal of Nonlinear Science, 15 (2005), 255-289.doi: 10.1007/s00332-004-0650-9.

    [13]

    S. D. Kelly, The Mechanics and Control of Robotic Locomotion with Applications to Aquatic Vehicles, PhD thesis, California Institute of Technology, 1998.

    [14]

    S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, John Wiley & Sons, 1963.

    [15]

    I. Kolar, P. W. Michor and J. Slovak, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

    [16]

    H. Lamb, Hydrodynamics, Reprint of the 1932 Cambridge University Press edition, Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1993.

    [17]

    T. Lee, M. Leok and N. H. McClamroch, Computational geometric optimal control of rigid bodies, Communications in Information and Systems, 8 (2008), 445-472.doi: 10.4310/CIS.2008.v8.n4.a5.

    [18]

    D. Lewis, J. E. Marsden, R. Montgomery and T. S. Ratiu, The Hamiltonian structure for dynamic free boundary problems, Phys. D, 18 (1986), 391-404.doi: 10.1016/0167-2789(86)90207-1.

    [19]

    J. C. Marrero, D. Martín de Diego and E. Martínez, Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids, Nonlinearity, 19 (2006), 1313-1348.doi: 10.1088/0951-7715/19/6/006.

    [20]

    J. E. Marsden and T. J. R. Hughes, Mathematical Foundations of Elasticity, Corrected reprint of the 1983 original. Dover Publications, Inc., New York, 1994.

    [21]

    J. E. Marsden and J. Scheurle, Lagrangian reduction and the double spherical pendulum, ZAMP, 44 (1993), 17-43.doi: 10.1007/BF00914351.

    [22]

    J. E. Marsden and J. Scheurle, The reduced Euler-Lagrange equations, Fields Institute Communications, 1 (1993), 139-164.

    [23]

    J. E. Marsden and M. West, Discrete mechanics and variational integrators, Acta Numerica, 10 (2001), 357-514.doi: 10.1017/S096249290100006X.

    [24]

    J. E. Radford, Symmetry, Reduction and Swimming in a Perfect Fluid, PhD thesis, California Institute of Technology, 2003.

    [25]

    G. Schwarz, Hodge Decomposition-A Method for Solving Boundary Value Problems, vol. 1607 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1995.

    [26]

    A. Shapere and F. Wilczek, Geometry of self-propulsion at low Reynolds number, Journal of Fluid Mechanics, 198 (1989), 557-585.doi: 10.1017/S002211208900025X.

    [27]

    M. Troyanov, On the Hodge decomposition in $\mathbbR^n$, Mosc. Math. J., 9 (2009), 899-926, 936.

    [28]

    J. Vankerschaver, E. Kanso and J. E. Marsden, The geometry and dynamics of interacting rigid bodies and point vortices, Journal of Geometric Mechanics, 1 (2009), 223-266.doi: 10.3934/jgm.2009.1.223.

    [29]

    J. Vankerschaver, E. Kanso and J. E. Marsden, The dynamics of a rigid body in potential flow with circulation, Reg. Chaot. Dyn., 15 (2010), 606-629.doi: 10.1134/S1560354710040143.

    [30]

    A. Weinstein, Lagrangian mechanics and groupoids, in Mechanics Day, 207-231, Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return