-
Previous Article
Higher-order variational problems on lie groups and optimal control applications
- JGM Home
- This Issue
- Next Article
The Hamilton-Jacobi equation, integrability, and nonholonomic systems
1. | Department of Mathematics, University of Calgary, Calgary, AB, T2N 1N4, Canada |
2. | Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova |
3. | Università di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italy |
References:
[1] |
R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin/Cummings, Reading, second edition, 1978. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics 60, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
V. I. Arnold and A. B. Givental, Symplectic Geometry, Dynamical systems IV, Encyclopaedia Math. Sci. Springer, 4 (2001), 1-138. |
[4] |
P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics. Hamilton-Jacobi theory and applications, Nonlinearity, 23 (2010), 1887-1918.
doi: 10.1088/0951-7715/23/8/006. |
[5] |
M. Barbero-Liñán, M. de León and D. Martín de Diego, Lagrangian submanifolds and the Hamilton-Jacobi equation, Monatsh. Math., 171 (2013), 269-290.
doi: 10.1007/s00605-013-0522-1. |
[6] |
L. M. Bates, Examples of singular nonholonomic reduction, Rep. Math. Phys., 42 (1998), 231-247.
doi: 10.1016/S0034-4877(98)80012-8. |
[7] |
L. M. Bates and R. Cushman, What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., 44 (1999), 29-35.
doi: 10.1016/S0034-4877(99)80142-6. |
[8] |
L. M. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.
doi: 10.1016/0034-4877(96)84069-9. |
[9] |
L. M. Bates and J. Śniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115.
doi: 10.1016/0034-4877(93)90073-N. |
[10] |
O. I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems, Comm. Math. Phys., 196 (1998), 19-51.
doi: 10.1007/s002200050412. |
[11] |
J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417-1458.
doi: 10.1142/S0219887806001764. |
[12] |
J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431-454.
doi: 10.1142/S0219887810004385. |
[13] |
R. Cushman, D. Kemppeinen, J. Śniatycki and L. M. Bates, Geometry of nonholonomic constraints, Rep. Math. Phys., 36 (1995), 275-286.
doi: 10.1016/0034-4877(96)83625-1. |
[14] |
M. de León, J. C. Marrero and D. Martín de Diego, Linear almost-Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.
doi: 10.3934/jgm.2010.2.159. |
[15] |
L. C. Evans, Weak kam theory and partial differential equations, Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Mathematics, 1927 (2008), 123-154.
doi: 10.1007/978-3-540-75914-0_4. |
[16] |
F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations, Acta Appl. Math., 87 (2005), 93-121.
doi: 10.1007/s10440-005-1139-8. |
[17] |
F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Rep. Math. Phys., 62 (2008), 345-367.
doi: 10.1016/S0034-4877(09)00005-6. |
[18] |
F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems, J. Geom. Mech., 1 (2009), 389-416.
doi: 10.3934/jgm.2009.1.389. |
[19] |
A. Fathi, The Weak KAM Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics 88, 2014. |
[20] |
Y. N. Fedorov, Systems with an invariant measure on Lie groups, In Hamiltonian systems with three or more degrees of freedom (S'Agarò, 1995), 350-356, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533 Kluwer, Dordrecht, 1999. |
[21] |
D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, J. Phys. A: Math. Theor., 41 (2008), 015205, 14pp.
doi: 10.1088/1751-8113/41/1/015205. |
[22] |
M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints, J. Math. Phys., 53 (2012), 072905. |
[23] |
K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Systems and the $N$-body Problem, Applied Mathematical Sciences 90, Springer, second edition, 2009. |
[24] |
A. S. Mischenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl., 12 (1978), 113-121. |
[25] |
N. N. Nekhoroshev, Action-angle variables and their generalizations, Trans. Moskow Math. Soc., 26 (1972), 181-198. |
[26] |
T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacoby theory via Chaplygin Hamiltonization, J. Geom. Phys., 61 (2011), 1263-1291.
doi: 10.1016/j.geomphys.2011.02.015. |
[27] |
M. Pavon, Hamilton-Jacobi equation for nonholonomic mechanics, J. Math. Phys., 46 (2005), 032902, 8pp.
doi: 10.1063/1.1858441. |
[28] |
A. van der Schaft and B. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233.
doi: 10.1016/0034-4877(94)90038-8. |
[29] |
R. van Dooren, Second form of the generalized Hamilton-Jacobi method for nonholonomic dynamical systems, J. Appl. Math. Phys., 29 (1978), 828-834.
doi: 10.1007/BF01589294. |
[30] |
N. Woodhouse, Geometric Quantization, Oxford mathematical monographs. Oxford university press, second edition, 1991. |
show all references
References:
[1] |
R. Abraham and J. Marsden, Foundations of Mechanics, Benjamin/Cummings, Reading, second edition, 1978. |
[2] |
V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics 60, Springer-Verlag, New York, 1989.
doi: 10.1007/978-1-4757-2063-1. |
[3] |
V. I. Arnold and A. B. Givental, Symplectic Geometry, Dynamical systems IV, Encyclopaedia Math. Sci. Springer, 4 (2001), 1-138. |
[4] |
P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics. Hamilton-Jacobi theory and applications, Nonlinearity, 23 (2010), 1887-1918.
doi: 10.1088/0951-7715/23/8/006. |
[5] |
M. Barbero-Liñán, M. de León and D. Martín de Diego, Lagrangian submanifolds and the Hamilton-Jacobi equation, Monatsh. Math., 171 (2013), 269-290.
doi: 10.1007/s00605-013-0522-1. |
[6] |
L. M. Bates, Examples of singular nonholonomic reduction, Rep. Math. Phys., 42 (1998), 231-247.
doi: 10.1016/S0034-4877(98)80012-8. |
[7] |
L. M. Bates and R. Cushman, What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., 44 (1999), 29-35.
doi: 10.1016/S0034-4877(99)80142-6. |
[8] |
L. M. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems, Rep. Math. Phys., 37 (1996), 295-308.
doi: 10.1016/0034-4877(96)84069-9. |
[9] |
L. M. Bates and J. Śniatycki, Nonholonomic reduction, Rep. Math. Phys., 32 (1993), 99-115.
doi: 10.1016/0034-4877(93)90073-N. |
[10] |
O. I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems, Comm. Math. Phys., 196 (1998), 19-51.
doi: 10.1007/s002200050412. |
[11] |
J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417-1458.
doi: 10.1142/S0219887806001764. |
[12] |
J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431-454.
doi: 10.1142/S0219887810004385. |
[13] |
R. Cushman, D. Kemppeinen, J. Śniatycki and L. M. Bates, Geometry of nonholonomic constraints, Rep. Math. Phys., 36 (1995), 275-286.
doi: 10.1016/0034-4877(96)83625-1. |
[14] |
M. de León, J. C. Marrero and D. Martín de Diego, Linear almost-Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics, J. Geom. Mech., 2 (2010), 159-198.
doi: 10.3934/jgm.2010.2.159. |
[15] |
L. C. Evans, Weak kam theory and partial differential equations, Calculus of Variations and Nonlinear Partial Differential Equations, Lecture Notes in Mathematics, 1927 (2008), 123-154.
doi: 10.1007/978-3-540-75914-0_4. |
[16] |
F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations, Acta Appl. Math., 87 (2005), 93-121.
doi: 10.1007/s10440-005-1139-8. |
[17] |
F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics, Rep. Math. Phys., 62 (2008), 345-367.
doi: 10.1016/S0034-4877(09)00005-6. |
[18] |
F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems, J. Geom. Mech., 1 (2009), 389-416.
doi: 10.3934/jgm.2009.1.389. |
[19] |
A. Fathi, The Weak KAM Theorem in Lagrangian Dynamics, Cambridge Studies in Advanced Mathematics 88, 2014. |
[20] |
Y. N. Fedorov, Systems with an invariant measure on Lie groups, In Hamiltonian systems with three or more degrees of freedom (S'Agarò, 1995), 350-356, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 533 Kluwer, Dordrecht, 1999. |
[21] |
D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems, J. Phys. A: Math. Theor., 41 (2008), 015205, 14pp.
doi: 10.1088/1751-8113/41/1/015205. |
[22] |
M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints, J. Math. Phys., 53 (2012), 072905. |
[23] |
K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Systems and the $N$-body Problem, Applied Mathematical Sciences 90, Springer, second edition, 2009. |
[24] |
A. S. Mischenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems, Funct. Anal. Appl., 12 (1978), 113-121. |
[25] |
N. N. Nekhoroshev, Action-angle variables and their generalizations, Trans. Moskow Math. Soc., 26 (1972), 181-198. |
[26] |
T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacoby theory via Chaplygin Hamiltonization, J. Geom. Phys., 61 (2011), 1263-1291.
doi: 10.1016/j.geomphys.2011.02.015. |
[27] |
M. Pavon, Hamilton-Jacobi equation for nonholonomic mechanics, J. Math. Phys., 46 (2005), 032902, 8pp.
doi: 10.1063/1.1858441. |
[28] |
A. van der Schaft and B. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., 34 (1994), 225-233.
doi: 10.1016/0034-4877(94)90038-8. |
[29] |
R. van Dooren, Second form of the generalized Hamilton-Jacobi method for nonholonomic dynamical systems, J. Appl. Math. Phys., 29 (1978), 828-834.
doi: 10.1007/BF01589294. |
[30] |
N. Woodhouse, Geometric Quantization, Oxford mathematical monographs. Oxford university press, second edition, 1991. |
[1] |
Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461 |
[2] |
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159 |
[3] |
Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295 |
[4] |
Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317 |
[5] |
Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421 |
[6] |
Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513 |
[7] |
María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207 |
[8] |
Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493 |
[9] |
Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations and Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026 |
[10] |
Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917 |
[11] |
Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231 |
[12] |
Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623 |
[13] |
Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363 |
[14] |
Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461 |
[15] |
Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121 |
[16] |
Gonzalo Dávila. Comparison principles for nonlocal Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022061 |
[17] |
Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (5) : i-iii. doi: 10.3934/dcdss.201805i |
[18] |
Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291 |
[19] |
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683 |
[20] |
Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385 |
2021 Impact Factor: 0.737
Tools
Metrics
Other articles
by authors
[Back to Top]