December  2014, 6(4): 441-449. doi: 10.3934/jgm.2014.6.441

The Hamilton-Jacobi equation, integrability, and nonholonomic systems

1. 

Department of Mathematics, University of Calgary, Calgary, AB, T2N 1N4, Canada

2. 

Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova

3. 

Università di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italy

Received  February 2014 Revised  June 2014 Published  December 2014

By examining the linkage between conservation laws and symmetry, we explain why it appears there should not be an analogue of a complete integral for the Hamilton-Jacobi equation for integrable nonholonomic systems.
Citation: Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441
References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, Benjamin/Cummings, (1978). Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics 60, (1989). doi: 10.1007/978-1-4757-2063-1. Google Scholar

[3]

V. I. Arnold and A. B. Givental, Symplectic Geometry,, Dynamical systems IV, 4 (2001), 1. Google Scholar

[4]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics. Hamilton-Jacobi theory and applications,, Nonlinearity, 23 (2010), 1887. doi: 10.1088/0951-7715/23/8/006. Google Scholar

[5]

M. Barbero-Liñán, M. de León and D. Martín de Diego, Lagrangian submanifolds and the Hamilton-Jacobi equation,, Monatsh. Math., 171 (2013), 269. doi: 10.1007/s00605-013-0522-1. Google Scholar

[6]

L. M. Bates, Examples of singular nonholonomic reduction,, Rep. Math. Phys., 42 (1998), 231. doi: 10.1016/S0034-4877(98)80012-8. Google Scholar

[7]

L. M. Bates and R. Cushman, What is a completely integrable nonholonomic dynamical system?,, Rep. Math. Phys., 44 (1999), 29. doi: 10.1016/S0034-4877(99)80142-6. Google Scholar

[8]

L. M. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems,, Rep. Math. Phys., 37 (1996), 295. doi: 10.1016/0034-4877(96)84069-9. Google Scholar

[9]

L. M. Bates and J. Śniatycki, Nonholonomic reduction,, Rep. Math. Phys., 32 (1993), 99. doi: 10.1016/0034-4877(93)90073-N. Google Scholar

[10]

O. I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems,, Comm. Math. Phys., 196 (1998), 19. doi: 10.1007/s002200050412. Google Scholar

[11]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417. doi: 10.1142/S0219887806001764. Google Scholar

[12]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431. doi: 10.1142/S0219887810004385. Google Scholar

[13]

R. Cushman, D. Kemppeinen, J. Śniatycki and L. M. Bates, Geometry of nonholonomic constraints,, Rep. Math. Phys., 36 (1995), 275. doi: 10.1016/0034-4877(96)83625-1. Google Scholar

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost-Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159. doi: 10.3934/jgm.2010.2.159. Google Scholar

[15]

L. C. Evans, Weak kam theory and partial differential equations,, Calculus of Variations and Nonlinear Partial Differential Equations, 1927 (2008), 123. doi: 10.1007/978-3-540-75914-0_4. Google Scholar

[16]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Appl. Math., 87 (2005), 93. doi: 10.1007/s10440-005-1139-8. Google Scholar

[17]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics,, Rep. Math. Phys., 62 (2008), 345. doi: 10.1016/S0034-4877(09)00005-6. Google Scholar

[18]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems,, J. Geom. Mech., 1 (2009), 389. doi: 10.3934/jgm.2009.1.389. Google Scholar

[19]

A. Fathi, The Weak KAM Theorem in Lagrangian Dynamics,, Cambridge Studies in Advanced Mathematics 88, (2014). Google Scholar

[20]

Y. N. Fedorov, Systems with an invariant measure on Lie groups,, In Hamiltonian systems with three or more degrees of freedom (S'Agarò, (1995), 350. Google Scholar

[21]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/1/015205. Google Scholar

[22]

M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints,, J. Math. Phys., 53 (2012). Google Scholar

[23]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Systems and the $N$-body Problem,, Applied Mathematical Sciences 90, (2009). Google Scholar

[24]

A. S. Mischenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl., 12 (1978), 113. Google Scholar

[25]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181. Google Scholar

[26]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacoby theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263. doi: 10.1016/j.geomphys.2011.02.015. Google Scholar

[27]

M. Pavon, Hamilton-Jacobi equation for nonholonomic mechanics,, J. Math. Phys., 46 (2005). doi: 10.1063/1.1858441. Google Scholar

[28]

A. van der Schaft and B. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225. doi: 10.1016/0034-4877(94)90038-8. Google Scholar

[29]

R. van Dooren, Second form of the generalized Hamilton-Jacobi method for nonholonomic dynamical systems,, J. Appl. Math. Phys., 29 (1978), 828. doi: 10.1007/BF01589294. Google Scholar

[30]

N. Woodhouse, Geometric Quantization,, Oxford mathematical monographs. Oxford university press, (1991). Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, Benjamin/Cummings, (1978). Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics 60, (1989). doi: 10.1007/978-1-4757-2063-1. Google Scholar

[3]

V. I. Arnold and A. B. Givental, Symplectic Geometry,, Dynamical systems IV, 4 (2001), 1. Google Scholar

[4]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics. Hamilton-Jacobi theory and applications,, Nonlinearity, 23 (2010), 1887. doi: 10.1088/0951-7715/23/8/006. Google Scholar

[5]

M. Barbero-Liñán, M. de León and D. Martín de Diego, Lagrangian submanifolds and the Hamilton-Jacobi equation,, Monatsh. Math., 171 (2013), 269. doi: 10.1007/s00605-013-0522-1. Google Scholar

[6]

L. M. Bates, Examples of singular nonholonomic reduction,, Rep. Math. Phys., 42 (1998), 231. doi: 10.1016/S0034-4877(98)80012-8. Google Scholar

[7]

L. M. Bates and R. Cushman, What is a completely integrable nonholonomic dynamical system?,, Rep. Math. Phys., 44 (1999), 29. doi: 10.1016/S0034-4877(99)80142-6. Google Scholar

[8]

L. M. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems,, Rep. Math. Phys., 37 (1996), 295. doi: 10.1016/0034-4877(96)84069-9. Google Scholar

[9]

L. M. Bates and J. Śniatycki, Nonholonomic reduction,, Rep. Math. Phys., 32 (1993), 99. doi: 10.1016/0034-4877(93)90073-N. Google Scholar

[10]

O. I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems,, Comm. Math. Phys., 196 (1998), 19. doi: 10.1007/s002200050412. Google Scholar

[11]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417. doi: 10.1142/S0219887806001764. Google Scholar

[12]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431. doi: 10.1142/S0219887810004385. Google Scholar

[13]

R. Cushman, D. Kemppeinen, J. Śniatycki and L. M. Bates, Geometry of nonholonomic constraints,, Rep. Math. Phys., 36 (1995), 275. doi: 10.1016/0034-4877(96)83625-1. Google Scholar

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost-Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159. doi: 10.3934/jgm.2010.2.159. Google Scholar

[15]

L. C. Evans, Weak kam theory and partial differential equations,, Calculus of Variations and Nonlinear Partial Differential Equations, 1927 (2008), 123. doi: 10.1007/978-3-540-75914-0_4. Google Scholar

[16]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Appl. Math., 87 (2005), 93. doi: 10.1007/s10440-005-1139-8. Google Scholar

[17]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics,, Rep. Math. Phys., 62 (2008), 345. doi: 10.1016/S0034-4877(09)00005-6. Google Scholar

[18]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems,, J. Geom. Mech., 1 (2009), 389. doi: 10.3934/jgm.2009.1.389. Google Scholar

[19]

A. Fathi, The Weak KAM Theorem in Lagrangian Dynamics,, Cambridge Studies in Advanced Mathematics 88, (2014). Google Scholar

[20]

Y. N. Fedorov, Systems with an invariant measure on Lie groups,, In Hamiltonian systems with three or more degrees of freedom (S'Agarò, (1995), 350. Google Scholar

[21]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A: Math. Theor., 41 (2008). doi: 10.1088/1751-8113/41/1/015205. Google Scholar

[22]

M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints,, J. Math. Phys., 53 (2012). Google Scholar

[23]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Systems and the $N$-body Problem,, Applied Mathematical Sciences 90, (2009). Google Scholar

[24]

A. S. Mischenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl., 12 (1978), 113. Google Scholar

[25]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181. Google Scholar

[26]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacoby theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263. doi: 10.1016/j.geomphys.2011.02.015. Google Scholar

[27]

M. Pavon, Hamilton-Jacobi equation for nonholonomic mechanics,, J. Math. Phys., 46 (2005). doi: 10.1063/1.1858441. Google Scholar

[28]

A. van der Schaft and B. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225. doi: 10.1016/0034-4877(94)90038-8. Google Scholar

[29]

R. van Dooren, Second form of the generalized Hamilton-Jacobi method for nonholonomic dynamical systems,, J. Appl. Math. Phys., 29 (1978), 828. doi: 10.1007/BF01589294. Google Scholar

[30]

N. Woodhouse, Geometric Quantization,, Oxford mathematical monographs. Oxford university press, (1991). Google Scholar

[1]

Tomoki Ohsawa, Anthony M. Bloch. Nonholonomic Hamilton-Jacobi equation and integrability. Journal of Geometric Mechanics, 2009, 1 (4) : 461-481. doi: 10.3934/jgm.2009.1.461

[2]

Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159-198. doi: 10.3934/jgm.2010.2.159

[3]

Joan-Andreu Lázaro-Camí, Juan-Pablo Ortega. The stochastic Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2009, 1 (3) : 295-315. doi: 10.3934/jgm.2009.1.295

[4]

Giuseppe Marmo, Giuseppe Morandi, Narasimhaiengar Mukunda. The Hamilton-Jacobi theory and the analogy between classical and quantum mechanics. Journal of Geometric Mechanics, 2009, 1 (3) : 317-355. doi: 10.3934/jgm.2009.1.317

[5]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[6]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[7]

María Barbero-Liñán, Manuel de León, David Martín de Diego, Juan C. Marrero, Miguel C. Muñoz-Lecanda. Kinematic reduction and the Hamilton-Jacobi equation. Journal of Geometric Mechanics, 2012, 4 (3) : 207-237. doi: 10.3934/jgm.2012.4.207

[8]

Yoshikazu Giga, Przemysław Górka, Piotr Rybka. Nonlocal spatially inhomogeneous Hamilton-Jacobi equation with unusual free boundary. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 493-519. doi: 10.3934/dcds.2010.26.493

[9]

Yuxiang Li. Stabilization towards the steady state for a viscous Hamilton-Jacobi equation. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1917-1924. doi: 10.3934/cpaa.2009.8.1917

[10]

Alexander Quaas, Andrei Rodríguez. Analysis of the attainment of boundary conditions for a nonlocal diffusive Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5221-5243. doi: 10.3934/dcds.2018231

[11]

Renato Iturriaga, Héctor Sánchez-Morgado. Limit of the infinite horizon discounted Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2011, 15 (3) : 623-635. doi: 10.3934/dcdsb.2011.15.623

[12]

Nicolas Forcadel, Mamdouh Zaydan. A comparison principle for Hamilton-Jacobi equation with moving in time boundary. Evolution Equations & Control Theory, 2019, 8 (3) : 543-565. doi: 10.3934/eect.2019026

[13]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[14]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[15]

Manuel de León, David Martín de Diego, Miguel Vaquero. A Hamilton-Jacobi theory on Poisson manifolds. Journal of Geometric Mechanics, 2014, 6 (1) : 121-140. doi: 10.3934/jgm.2014.6.121

[16]

Laura Caravenna, Annalisa Cesaroni, Hung Vinh Tran. Preface: Recent developments related to conservation laws and Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : ⅰ-ⅲ. doi: 10.3934/dcdss.201805i

[17]

Fabio Camilli, Paola Loreti, Naoki Yamada. Systems of convex Hamilton-Jacobi equations with implicit obstacles and the obstacle problem. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1291-1302. doi: 10.3934/cpaa.2009.8.1291

[18]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[19]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[20]

Emeric Bouin. A Hamilton-Jacobi approach for front propagation in kinetic equations. Kinetic & Related Models, 2015, 8 (2) : 255-280. doi: 10.3934/krm.2015.8.255

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

[Back to Top]