December  2014, 6(4): 441-449. doi: 10.3934/jgm.2014.6.441

The Hamilton-Jacobi equation, integrability, and nonholonomic systems

1. 

Department of Mathematics, University of Calgary, Calgary, AB, T2N 1N4, Canada

2. 

Università di Padova, Dipartimento di Matematica Pura e Applicata, Via Trieste 63, 35121 Padova

3. 

Università di Padova, Dipartimento di Matematica, Via Trieste, 63, 35121 Padova, Italy

Received  February 2014 Revised  June 2014 Published  December 2014

By examining the linkage between conservation laws and symmetry, we explain why it appears there should not be an analogue of a complete integral for the Hamilton-Jacobi equation for integrable nonholonomic systems.
Citation: Larry M. Bates, Francesco Fassò, Nicola Sansonetto. The Hamilton-Jacobi equation, integrability, and nonholonomic systems. Journal of Geometric Mechanics, 2014, 6 (4) : 441-449. doi: 10.3934/jgm.2014.6.441
References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, Benjamin/Cummings, (1978).   Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics 60, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[3]

V. I. Arnold and A. B. Givental, Symplectic Geometry,, Dynamical systems IV, 4 (2001), 1.   Google Scholar

[4]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics. Hamilton-Jacobi theory and applications,, Nonlinearity, 23 (2010), 1887.  doi: 10.1088/0951-7715/23/8/006.  Google Scholar

[5]

M. Barbero-Liñán, M. de León and D. Martín de Diego, Lagrangian submanifolds and the Hamilton-Jacobi equation,, Monatsh. Math., 171 (2013), 269.  doi: 10.1007/s00605-013-0522-1.  Google Scholar

[6]

L. M. Bates, Examples of singular nonholonomic reduction,, Rep. Math. Phys., 42 (1998), 231.  doi: 10.1016/S0034-4877(98)80012-8.  Google Scholar

[7]

L. M. Bates and R. Cushman, What is a completely integrable nonholonomic dynamical system?,, Rep. Math. Phys., 44 (1999), 29.  doi: 10.1016/S0034-4877(99)80142-6.  Google Scholar

[8]

L. M. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems,, Rep. Math. Phys., 37 (1996), 295.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[9]

L. M. Bates and J. Śniatycki, Nonholonomic reduction,, Rep. Math. Phys., 32 (1993), 99.  doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[10]

O. I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems,, Comm. Math. Phys., 196 (1998), 19.  doi: 10.1007/s002200050412.  Google Scholar

[11]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417.  doi: 10.1142/S0219887806001764.  Google Scholar

[12]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431.  doi: 10.1142/S0219887810004385.  Google Scholar

[13]

R. Cushman, D. Kemppeinen, J. Śniatycki and L. M. Bates, Geometry of nonholonomic constraints,, Rep. Math. Phys., 36 (1995), 275.  doi: 10.1016/0034-4877(96)83625-1.  Google Scholar

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost-Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[15]

L. C. Evans, Weak kam theory and partial differential equations,, Calculus of Variations and Nonlinear Partial Differential Equations, 1927 (2008), 123.  doi: 10.1007/978-3-540-75914-0_4.  Google Scholar

[16]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Appl. Math., 87 (2005), 93.  doi: 10.1007/s10440-005-1139-8.  Google Scholar

[17]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics,, Rep. Math. Phys., 62 (2008), 345.  doi: 10.1016/S0034-4877(09)00005-6.  Google Scholar

[18]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems,, J. Geom. Mech., 1 (2009), 389.  doi: 10.3934/jgm.2009.1.389.  Google Scholar

[19]

A. Fathi, The Weak KAM Theorem in Lagrangian Dynamics,, Cambridge Studies in Advanced Mathematics 88, (2014).   Google Scholar

[20]

Y. N. Fedorov, Systems with an invariant measure on Lie groups,, In Hamiltonian systems with three or more degrees of freedom (S'Agarò, (1995), 350.   Google Scholar

[21]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/1/015205.  Google Scholar

[22]

M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints,, J. Math. Phys., 53 (2012).   Google Scholar

[23]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Systems and the $N$-body Problem,, Applied Mathematical Sciences 90, (2009).   Google Scholar

[24]

A. S. Mischenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl., 12 (1978), 113.   Google Scholar

[25]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181.   Google Scholar

[26]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacoby theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263.  doi: 10.1016/j.geomphys.2011.02.015.  Google Scholar

[27]

M. Pavon, Hamilton-Jacobi equation for nonholonomic mechanics,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.1858441.  Google Scholar

[28]

A. van der Schaft and B. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225.  doi: 10.1016/0034-4877(94)90038-8.  Google Scholar

[29]

R. van Dooren, Second form of the generalized Hamilton-Jacobi method for nonholonomic dynamical systems,, J. Appl. Math. Phys., 29 (1978), 828.  doi: 10.1007/BF01589294.  Google Scholar

[30]

N. Woodhouse, Geometric Quantization,, Oxford mathematical monographs. Oxford university press, (1991).   Google Scholar

show all references

References:
[1]

R. Abraham and J. Marsden, Foundations of Mechanics,, Benjamin/Cummings, (1978).   Google Scholar

[2]

V. I. Arnold, Mathematical Methods of Classical Mechanics,, Graduate Texts in Mathematics 60, (1989).  doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[3]

V. I. Arnold and A. B. Givental, Symplectic Geometry,, Dynamical systems IV, 4 (2001), 1.   Google Scholar

[4]

P. Balseiro, J. C. Marrero, D. Martín de Diego and E. Padrón, A unified framework for mechanics. Hamilton-Jacobi theory and applications,, Nonlinearity, 23 (2010), 1887.  doi: 10.1088/0951-7715/23/8/006.  Google Scholar

[5]

M. Barbero-Liñán, M. de León and D. Martín de Diego, Lagrangian submanifolds and the Hamilton-Jacobi equation,, Monatsh. Math., 171 (2013), 269.  doi: 10.1007/s00605-013-0522-1.  Google Scholar

[6]

L. M. Bates, Examples of singular nonholonomic reduction,, Rep. Math. Phys., 42 (1998), 231.  doi: 10.1016/S0034-4877(98)80012-8.  Google Scholar

[7]

L. M. Bates and R. Cushman, What is a completely integrable nonholonomic dynamical system?,, Rep. Math. Phys., 44 (1999), 29.  doi: 10.1016/S0034-4877(99)80142-6.  Google Scholar

[8]

L. M. Bates, H. Graumann and C. MacDonnell, Examples of gauge conservation laws in nonholonomic systems,, Rep. Math. Phys., 37 (1996), 295.  doi: 10.1016/0034-4877(96)84069-9.  Google Scholar

[9]

L. M. Bates and J. Śniatycki, Nonholonomic reduction,, Rep. Math. Phys., 32 (1993), 99.  doi: 10.1016/0034-4877(93)90073-N.  Google Scholar

[10]

O. I. Bogoyavlenskij, Extended integrability and bi-Hamiltonian systems,, Comm. Math. Phys., 196 (1998), 19.  doi: 10.1007/s002200050412.  Google Scholar

[11]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory,, Int. J. Geom. Methods Mod. Phys., 3 (2006), 1417.  doi: 10.1142/S0219887806001764.  Google Scholar

[12]

J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz Lecanda and N. Román Roy, Geometric Hamilton-Jacobi theory for nonholonomic dynamical systems,, Int. J. Geom. Methods Mod. Phys., 7 (2010), 431.  doi: 10.1142/S0219887810004385.  Google Scholar

[13]

R. Cushman, D. Kemppeinen, J. Śniatycki and L. M. Bates, Geometry of nonholonomic constraints,, Rep. Math. Phys., 36 (1995), 275.  doi: 10.1016/0034-4877(96)83625-1.  Google Scholar

[14]

M. de León, J. C. Marrero and D. Martín de Diego, Linear almost-Poisson structures and Hamilton-Jacobi equation. Applications to nonholonomic mechanics,, J. Geom. Mech., 2 (2010), 159.  doi: 10.3934/jgm.2010.2.159.  Google Scholar

[15]

L. C. Evans, Weak kam theory and partial differential equations,, Calculus of Variations and Nonlinear Partial Differential Equations, 1927 (2008), 123.  doi: 10.1007/978-3-540-75914-0_4.  Google Scholar

[16]

F. Fassò, Superintegrable Hamiltonian systems: Geometry and perturbations,, Acta Appl. Math., 87 (2005), 93.  doi: 10.1007/s10440-005-1139-8.  Google Scholar

[17]

F. Fassò, A. Giacobbe and N. Sansonetto, Gauge conservation laws and the momentum equation in nonholonomic mechanics,, Rep. Math. Phys., 62 (2008), 345.  doi: 10.1016/S0034-4877(09)00005-6.  Google Scholar

[18]

F. Fassò, A. Giacobbe and N. Sansonetto, On the number of weakly Noetherian constants of motion of nonholonomic systems,, J. Geom. Mech., 1 (2009), 389.  doi: 10.3934/jgm.2009.1.389.  Google Scholar

[19]

A. Fathi, The Weak KAM Theorem in Lagrangian Dynamics,, Cambridge Studies in Advanced Mathematics 88, (2014).   Google Scholar

[20]

Y. N. Fedorov, Systems with an invariant measure on Lie groups,, In Hamiltonian systems with three or more degrees of freedom (S'Agarò, (1995), 350.   Google Scholar

[21]

D. Iglesias-Ponte, M. de León and D. Martín de Diego, Towards a Hamilton-Jacobi theory for nonholonomic mechanical systems,, J. Phys. A: Math. Theor., 41 (2008).  doi: 10.1088/1751-8113/41/1/015205.  Google Scholar

[22]

M. Leok, T. Ohsawa and D. Sosa, Hamilton-Jacobi theory for degenerate Lagrangian systems with holonomic and nonholonomic constraints,, J. Math. Phys., 53 (2012).   Google Scholar

[23]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Systems and the $N$-body Problem,, Applied Mathematical Sciences 90, (2009).   Google Scholar

[24]

A. S. Mischenko and A. T. Fomenko, Generalized Liouville method of integration of Hamiltonian systems,, Funct. Anal. Appl., 12 (1978), 113.   Google Scholar

[25]

N. N. Nekhoroshev, Action-angle variables and their generalizations,, Trans. Moskow Math. Soc., 26 (1972), 181.   Google Scholar

[26]

T. Ohsawa, O. E. Fernandez, A. M. Bloch and D. V. Zenkov, Nonholonomic Hamilton-Jacoby theory via Chaplygin Hamiltonization,, J. Geom. Phys., 61 (2011), 1263.  doi: 10.1016/j.geomphys.2011.02.015.  Google Scholar

[27]

M. Pavon, Hamilton-Jacobi equation for nonholonomic mechanics,, J. Math. Phys., 46 (2005).  doi: 10.1063/1.1858441.  Google Scholar

[28]

A. van der Schaft and B. Maschke, On the Hamiltonian formulation of nonholonomic mechanical systems,, Rep. Math. Phys., 34 (1994), 225.  doi: 10.1016/0034-4877(94)90038-8.  Google Scholar

[29]

R. van Dooren, Second form of the generalized Hamilton-Jacobi method for nonholonomic dynamical systems,, J. Appl. Math. Phys., 29 (1978), 828.  doi: 10.1007/BF01589294.  Google Scholar

[30]

N. Woodhouse, Geometric Quantization,, Oxford mathematical monographs. Oxford university press, (1991).   Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[3]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[4]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[5]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[6]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[9]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[10]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[15]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[18]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[19]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (4)

[Back to Top]