December  2014, 6(4): 527-547. doi: 10.3934/jgm.2014.6.527

Nonlinear constraints in nonholonomic mechanics

1. 

Department of Applied Mathematics, University of Craiova, Craiova 200585, Str. A.I. Cuza 13, Romania

2. 

Department of Mathematics and Informatics, University Transilvania of Braşov, Braşov 500091, Str. Iuliu Maniu 50, Romania

Received  December 2013 Revised  June 2014 Published  December 2014

In this paper we have obtained some dynamics equations, in the presence of nonlinear nonholonomic constraints and according to a lagrangian and some Chetaev-like conditions. Using some natural regular conditions, a simple form of these equations is given. In the particular cases of linear and affine constraints, one recovers the classical equations in the forms known previously, for example, by Bloch and all [3,4]. The case of time-dependent constraints is also considered. Examples of linear constraints, time independent and time depenndent nonlinear constraints are considered, as well as their dynamics given by suitable lagrangians. All examples are based on classical ones, such as those given by Appell's machine.
Citation: Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527-547. doi: 10.3934/jgm.2014.6.527
References:
[1]

A. Bejancu, Nonholonomic mechanical systems and Kaluza-Klein theory,, Journal of Nonlinear Science, 22 (2012), 213.  doi: 10.1007/s00332-011-9114-1.  Google Scholar

[2]

S. Benenti, Geometrical aspects of the dynamics of non-holonomic systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 203.   Google Scholar

[3]

A. M. Bloch, Nonholonomic Mechanics and Control,, Vol. 24, (2003).  doi: 10.1007/b97376.  Google Scholar

[4]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Archive for Rational Mechanics and Analysis, 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[5]

I. Bucataru and R. Miron, Finsler-Lagrange geometry: Applications to dynamical systems,, Editura Academiei Romane, (2007).   Google Scholar

[6]

H. Cendra, A. Ibort, M. de Léon and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.  doi: 10.1063/1.1763245.  Google Scholar

[7]

J. Cortés, M. de León, J. C. Marrero and E. Martí nez, Non-holonomic Lagrangian systems on Lie algebroids,, arXiv preprint math-ph/0512003 (2005)., (2005).   Google Scholar

[8]

P. Dazord, Mécanique hamiltonienne en présence de contraintes,, Illinois Journal of Mathematics, 38 (1994), 148.   Google Scholar

[9]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids,, Journal of Physics A: Mathematical and Theoretical, 41 (2008).  doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[10]

K. Grabowska, P. Urbański and J. Grabowski, Geometrical mechanics on algebroids,, International Journal of Geometric Methods in Modern Physics, 3 (2006), 559.  doi: 10.1142/S0219887806001259.  Google Scholar

[11]

Y.-X. Guo, J. Li-Yan and Y. Ying, Symmetries of mechanical systems with nonlinear nonholonomic constraints,, Chinese Physics, 10 (2001).   Google Scholar

[12]

L. A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Semin. Mat., 54 (1996), 295.   Google Scholar

[13]

M. H. Kobayashi and W. M. Oliva, A note on the conservation of energy and volume in the setting of nonholonomic mechanical systems,, Qualitative Theory of Dynamical Systems, 4 (2004), 383.  doi: 10.1007/BF02970866.  Google Scholar

[14]

O. Krupková, Mechanical systems with nonholonomic constraints,, Journal of Mathematical Physics, 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[15]

O. Krupková, Geometric mechanics on nonholonomic submanifolds,, Communications in Mathematics, 18 (2010), 51.   Google Scholar

[16]

S. Lang, Differential and Riemannian Manifolds,, 3-th ed., (1995).  doi: 10.1007/978-1-4612-4182-9.  Google Scholar

[17]

M. de León, A historical review on nonholonomic mechanics,, Revista de la Real Academia de Ciencias Exactas, (2011).   Google Scholar

[18]

M. de León, J. C. Marrero and D. M. de Diego, Mechanical systems with nonlinear constraints,, International Journal of Theoretical Physics, 36 (1997), 979.  doi: 10.1007/BF02435796.  Google Scholar

[19]

M. de León, D. Martíin de Diego and M. Vaquero, A Hamilton-Jacobi theory on Poisson manifolds,, Journal of Geometric Mechanics, 6 (2014), 121.  doi: 10.3934/jgm.2014.6.121.  Google Scholar

[20]

A. D. Lewis, The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint,, Reports on Mathematical Physics, 38 (1996), 11.  doi: 10.1016/0034-4877(96)87675-0.  Google Scholar

[21]

S.-M. Li and J. Berakdar, A generalization of the Chetaev condition for nonlinear nonholonomic constraints: The velocity-determined virtual displacement approach,, Reports on Mathematical Physics, 63 (2009), 179.  doi: 10.1016/S0034-4877(09)00012-3.  Google Scholar

[22]

C. M. Marle, Kinematic and geometric constraints, servomechanisms and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353.   Google Scholar

[23]

C. M. Marle, Various approaches to conservative and nonconservative nonholonomic systems,, Reports on Mathematical Physics, 42 (1998), 211.  doi: 10.1016/S0034-4877(98)80011-6.  Google Scholar

[24]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, Journal of Physics A: Mathematical and General, 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[25]

P. Molino, Riemannian Foliations,, Birkhäuser, (1988).  doi: 10.1007/978-1-4684-8670-4.  Google Scholar

[26]

P. Popescu and M. Popescu, Lagrangians adapted to submersions and foliations,, Differential Geom. Appl., 27 (2009), 171.  doi: 10.1016/j.difgeo.2008.06.017.  Google Scholar

[27]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A, 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[28]

M. Swaczyna, Several examples of nonholonomic mechanical systems,, Communications in Mathematics, 19 (2011), 27.   Google Scholar

show all references

References:
[1]

A. Bejancu, Nonholonomic mechanical systems and Kaluza-Klein theory,, Journal of Nonlinear Science, 22 (2012), 213.  doi: 10.1007/s00332-011-9114-1.  Google Scholar

[2]

S. Benenti, Geometrical aspects of the dynamics of non-holonomic systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 203.   Google Scholar

[3]

A. M. Bloch, Nonholonomic Mechanics and Control,, Vol. 24, (2003).  doi: 10.1007/b97376.  Google Scholar

[4]

A. M. Bloch, P. S. Krishnaprasad, J. E. Marsden and R. M. Murray, Nonholonomic mechanical systems with symmetry,, Archive for Rational Mechanics and Analysis, 136 (1996), 21.  doi: 10.1007/BF02199365.  Google Scholar

[5]

I. Bucataru and R. Miron, Finsler-Lagrange geometry: Applications to dynamical systems,, Editura Academiei Romane, (2007).   Google Scholar

[6]

H. Cendra, A. Ibort, M. de Léon and D. M. de Diego, A generalization of Chetaev's principle for a class of higher order nonholonomic constraints,, J. Math. Phys., 45 (2004), 2785.  doi: 10.1063/1.1763245.  Google Scholar

[7]

J. Cortés, M. de León, J. C. Marrero and E. Martí nez, Non-holonomic Lagrangian systems on Lie algebroids,, arXiv preprint math-ph/0512003 (2005)., (2005).   Google Scholar

[8]

P. Dazord, Mécanique hamiltonienne en présence de contraintes,, Illinois Journal of Mathematics, 38 (1994), 148.   Google Scholar

[9]

K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids,, Journal of Physics A: Mathematical and Theoretical, 41 (2008).  doi: 10.1088/1751-8113/41/17/175204.  Google Scholar

[10]

K. Grabowska, P. Urbański and J. Grabowski, Geometrical mechanics on algebroids,, International Journal of Geometric Methods in Modern Physics, 3 (2006), 559.  doi: 10.1142/S0219887806001259.  Google Scholar

[11]

Y.-X. Guo, J. Li-Yan and Y. Ying, Symmetries of mechanical systems with nonlinear nonholonomic constraints,, Chinese Physics, 10 (2001).   Google Scholar

[12]

L. A. Ibort, M. de León, G. Marmo and D. M. de Diego, Non-holonomic constrained systems as implicit differential equations,, Rend. Semin. Mat., 54 (1996), 295.   Google Scholar

[13]

M. H. Kobayashi and W. M. Oliva, A note on the conservation of energy and volume in the setting of nonholonomic mechanical systems,, Qualitative Theory of Dynamical Systems, 4 (2004), 383.  doi: 10.1007/BF02970866.  Google Scholar

[14]

O. Krupková, Mechanical systems with nonholonomic constraints,, Journal of Mathematical Physics, 38 (1997), 5098.  doi: 10.1063/1.532196.  Google Scholar

[15]

O. Krupková, Geometric mechanics on nonholonomic submanifolds,, Communications in Mathematics, 18 (2010), 51.   Google Scholar

[16]

S. Lang, Differential and Riemannian Manifolds,, 3-th ed., (1995).  doi: 10.1007/978-1-4612-4182-9.  Google Scholar

[17]

M. de León, A historical review on nonholonomic mechanics,, Revista de la Real Academia de Ciencias Exactas, (2011).   Google Scholar

[18]

M. de León, J. C. Marrero and D. M. de Diego, Mechanical systems with nonlinear constraints,, International Journal of Theoretical Physics, 36 (1997), 979.  doi: 10.1007/BF02435796.  Google Scholar

[19]

M. de León, D. Martíin de Diego and M. Vaquero, A Hamilton-Jacobi theory on Poisson manifolds,, Journal of Geometric Mechanics, 6 (2014), 121.  doi: 10.3934/jgm.2014.6.121.  Google Scholar

[20]

A. D. Lewis, The geometry of the Gibbs-Appell equations and Gauss' principle of least constraint,, Reports on Mathematical Physics, 38 (1996), 11.  doi: 10.1016/0034-4877(96)87675-0.  Google Scholar

[21]

S.-M. Li and J. Berakdar, A generalization of the Chetaev condition for nonlinear nonholonomic constraints: The velocity-determined virtual displacement approach,, Reports on Mathematical Physics, 63 (2009), 179.  doi: 10.1016/S0034-4877(09)00012-3.  Google Scholar

[22]

C. M. Marle, Kinematic and geometric constraints, servomechanisms and control of mechanical systems,, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353.   Google Scholar

[23]

C. M. Marle, Various approaches to conservative and nonconservative nonholonomic systems,, Reports on Mathematical Physics, 42 (1998), 211.  doi: 10.1016/S0034-4877(98)80011-6.  Google Scholar

[24]

T. Mestdag and B. Langerock, A Lie algebroid framework for non-holonomic systems,, Journal of Physics A: Mathematical and General, 38 (2005), 1097.  doi: 10.1088/0305-4470/38/5/011.  Google Scholar

[25]

P. Molino, Riemannian Foliations,, Birkhäuser, (1988).  doi: 10.1007/978-1-4684-8670-4.  Google Scholar

[26]

P. Popescu and M. Popescu, Lagrangians adapted to submersions and foliations,, Differential Geom. Appl., 27 (2009), 171.  doi: 10.1016/j.difgeo.2008.06.017.  Google Scholar

[27]

W. Sarlet, F. Cantrijn and D. J. Saunders, A geometrical framework for the study of non-holonomic Lagrangian systems,, J. Phys. A, 28 (1995), 3253.  doi: 10.1088/0305-4470/28/11/022.  Google Scholar

[28]

M. Swaczyna, Several examples of nonholonomic mechanical systems,, Communications in Mathematics, 19 (2011), 27.   Google Scholar

[1]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[2]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[3]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[4]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[5]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[6]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[7]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[10]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[17]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]