-
Previous Article
A dynamical condition for differentiability of Mather's average action
- JGM Home
- This Issue
-
Next Article
Geometry of Lagrangian and Hamiltonian formalisms in the dynamics of strings
Nonlinear constraints in nonholonomic mechanics
1. | Department of Applied Mathematics, University of Craiova, Craiova 200585, Str. A.I. Cuza 13, Romania |
2. | Department of Mathematics and Informatics, University Transilvania of Braşov, Braşov 500091, Str. Iuliu Maniu 50, Romania |
References:
[1] |
Journal of Nonlinear Science, 22 (2012), 213-233.
doi: 10.1007/s00332-011-9114-1. |
[2] |
Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 203-212. |
[3] |
Vol. 24, Springer, 2003.
doi: 10.1007/b97376. |
[4] |
Archive for Rational Mechanics and Analysis, 136 (1996), 21-99.
doi: 10.1007/BF02199365. |
[5] |
Editura Academiei Romane, Bucuresti, 2007. |
[6] |
J. Math. Phys., 45 (2004), 2785-2801.
doi: 10.1063/1.1763245. |
[7] |
arXiv preprint math-ph/0512003 (2005). Google Scholar |
[8] |
Illinois Journal of Mathematics, 38 (1994), 148-175. |
[9] |
Journal of Physics A: Mathematical and Theoretical, 41 (2008), 175204, 25pp.
doi: 10.1088/1751-8113/41/17/175204. |
[10] |
International Journal of Geometric Methods in Modern Physics, 3 (2006), 559-575.
doi: 10.1142/S0219887806001259. |
[11] |
Chinese Physics, 10 (2001), p181. Google Scholar |
[12] |
Rend. Semin. Mat., Torino, 54 (1996), 295-317. |
[13] |
Qualitative Theory of Dynamical Systems, 4 (2004), 383-411.
doi: 10.1007/BF02970866. |
[14] |
Journal of Mathematical Physics, 38 (1997), 5098-5126.
doi: 10.1063/1.532196. |
[15] |
Communications in Mathematics, 18 (2010), 51-77. |
[16] |
3-th ed., Springer Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4182-9. |
[17] |
Revista de la Real Academia de Ciencias Exactas, Fisicas Y Naturales (Serie A: Matematicas) 105, 2011. Google Scholar |
[18] |
International Journal of Theoretical Physics, 36 (1997), 979-995.
doi: 10.1007/BF02435796. |
[19] |
Journal of Geometric Mechanics, 6 (2014), 121-140.
doi: 10.3934/jgm.2014.6.121. |
[20] |
Reports on Mathematical Physics, 38 (1996), 11-28.
doi: 10.1016/0034-4877(96)87675-0. |
[21] |
Reports on Mathematical Physics, 63 (2009), 179-189.
doi: 10.1016/S0034-4877(09)00012-3. |
[22] |
Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353-364. |
[23] |
Reports on Mathematical Physics, 42 (1998), 211-229.
doi: 10.1016/S0034-4877(98)80011-6. |
[24] |
Journal of Physics A: Mathematical and General, 38 (2005), 1097-1111.
doi: 10.1088/0305-4470/38/5/011. |
[25] |
Birkhäuser, Progr. Math. 73, 1988.
doi: 10.1007/978-1-4684-8670-4. |
[26] |
Differential Geom. Appl., 27 (2009), 171-178.
doi: 10.1016/j.difgeo.2008.06.017. |
[27] |
J. Phys. A, 28 (1995), 3253-3268.
doi: 10.1088/0305-4470/28/11/022. |
[28] |
Communications in Mathematics, 19 (2011), 27-56. |
show all references
References:
[1] |
Journal of Nonlinear Science, 22 (2012), 213-233.
doi: 10.1007/s00332-011-9114-1. |
[2] |
Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 203-212. |
[3] |
Vol. 24, Springer, 2003.
doi: 10.1007/b97376. |
[4] |
Archive for Rational Mechanics and Analysis, 136 (1996), 21-99.
doi: 10.1007/BF02199365. |
[5] |
Editura Academiei Romane, Bucuresti, 2007. |
[6] |
J. Math. Phys., 45 (2004), 2785-2801.
doi: 10.1063/1.1763245. |
[7] |
arXiv preprint math-ph/0512003 (2005). Google Scholar |
[8] |
Illinois Journal of Mathematics, 38 (1994), 148-175. |
[9] |
Journal of Physics A: Mathematical and Theoretical, 41 (2008), 175204, 25pp.
doi: 10.1088/1751-8113/41/17/175204. |
[10] |
International Journal of Geometric Methods in Modern Physics, 3 (2006), 559-575.
doi: 10.1142/S0219887806001259. |
[11] |
Chinese Physics, 10 (2001), p181. Google Scholar |
[12] |
Rend. Semin. Mat., Torino, 54 (1996), 295-317. |
[13] |
Qualitative Theory of Dynamical Systems, 4 (2004), 383-411.
doi: 10.1007/BF02970866. |
[14] |
Journal of Mathematical Physics, 38 (1997), 5098-5126.
doi: 10.1063/1.532196. |
[15] |
Communications in Mathematics, 18 (2010), 51-77. |
[16] |
3-th ed., Springer Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4182-9. |
[17] |
Revista de la Real Academia de Ciencias Exactas, Fisicas Y Naturales (Serie A: Matematicas) 105, 2011. Google Scholar |
[18] |
International Journal of Theoretical Physics, 36 (1997), 979-995.
doi: 10.1007/BF02435796. |
[19] |
Journal of Geometric Mechanics, 6 (2014), 121-140.
doi: 10.3934/jgm.2014.6.121. |
[20] |
Reports on Mathematical Physics, 38 (1996), 11-28.
doi: 10.1016/0034-4877(96)87675-0. |
[21] |
Reports on Mathematical Physics, 63 (2009), 179-189.
doi: 10.1016/S0034-4877(09)00012-3. |
[22] |
Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 353-364. |
[23] |
Reports on Mathematical Physics, 42 (1998), 211-229.
doi: 10.1016/S0034-4877(98)80011-6. |
[24] |
Journal of Physics A: Mathematical and General, 38 (2005), 1097-1111.
doi: 10.1088/0305-4470/38/5/011. |
[25] |
Birkhäuser, Progr. Math. 73, 1988.
doi: 10.1007/978-1-4684-8670-4. |
[26] |
Differential Geom. Appl., 27 (2009), 171-178.
doi: 10.1016/j.difgeo.2008.06.017. |
[27] |
J. Phys. A, 28 (1995), 3253-3268.
doi: 10.1088/0305-4470/28/11/022. |
[28] |
Communications in Mathematics, 19 (2011), 27-56. |
[1] |
Manuel de León, Víctor M. Jiménez, Manuel Lainz. Contact Hamiltonian and Lagrangian systems with nonholonomic constraints. Journal of Geometric Mechanics, 2021, 13 (1) : 25-53. doi: 10.3934/jgm.2021001 |
[2] |
Deren Han, Zehui Jia, Yongzhong Song, David Z. W. Wang. An efficient projection method for nonlinear inverse problems with sparsity constraints. Inverse Problems & Imaging, 2016, 10 (3) : 689-709. doi: 10.3934/ipi.2016017 |
[3] |
Shi'an Wang, N. U. Ahmed. Optimal control and stabilization of building maintenance units based on minimum principle. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1713-1727. doi: 10.3934/jimo.2020041 |
[4] |
David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002 |
[5] |
Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213 |
[6] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[7] |
Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021024 |
[8] |
Yue Qi, Xiaolin Li, Su Zhang. Optimizing 3-objective portfolio selection with equality constraints and analyzing the effect of varying constraints on the efficient sets. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1531-1556. doi: 10.3934/jimo.2020033 |
[9] |
Peng Zhang, Yongquan Zeng, Guotai Chi. Time-consistent multiperiod mean semivariance portfolio selection with the real constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1663-1680. doi: 10.3934/jimo.2020039 |
[10] |
Li Chu, Bo Wang, Jie Zhang, Hong-Wei Zhang. Convergence analysis of a smoothing SAA method for a stochastic mathematical program with second-order cone complementarity constraints. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1863-1886. doi: 10.3934/jimo.2020050 |
[11] |
Bingru Zhang, Chuanye Gu, Jueyou Li. Distributed convex optimization with coupling constraints over time-varying directed graphs†. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2119-2138. doi: 10.3934/jimo.2020061 |
[12] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[13] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[14] |
Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933 |
[15] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[16] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[17] |
Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021021 |
[18] |
Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185 |
[19] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[20] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]