Citation: |
[1] |
M-C. Arnaud, The tiered Aubry set for autonomous Lagrangian functions, Ann. Inst. Fourier (Grenoble), 58 (2008), 1733-1759.doi: 10.5802/aif.2397. |
[2] |
M-C. Arnaud, A particular minimization property implies $C^{0}$-integrability, Journal of Differential Equations, 250 (2011), 2389-2401.doi: 10.1016/j.jde.2010.12.002. |
[3] |
V. Bangert, Minimal geodesics, Erg. Theory and Dynamical Systems, 10 (1999), 263-286.doi: 10.1017/S014338570000554X. |
[4] |
P. Bernard, Existence of $C^{1,1}$ critical sub-solutions of the Hamilton-Jacobi equation on compact manifolds, Ann. Sci. École Norm. Sup., 40 (2007), 445-452.doi: 10.1016/j.ansens.2007.01.004. |
[5] |
P. Bernard and G. Contreras, A generic property of families of Lagrangian systems, Annals of Mathematics, 167 (2008), 1099-1108.doi: 10.4007/annals.2008.167.1099. |
[6] |
P. Bernard, On the Conley decomposition of Mather sets, Rev. Mat. Iberoamericana, 26 (2010), 115-132.doi: 10.4171/RMI/596. |
[7] |
D. Burago, S. Ivanov and B. Kleiner, On the structure of the stable norm of periodic metrics, Math. Research Letters, 4 (1997), 791-808.doi: 10.4310/MRL.1997.v4.n6.a2. |
[8] |
G. Contreras and R. Iturriaga, Global Minimizers of Autonomous Lagrangians, $22^{\circ }$ Colóquio Brasileiro de Matemática IMPA, 1999. |
[9] |
G. Contreras, L. Macarini and G. Paternain, Periodic orbits for exact magnetic flows on surfaces, International Mathematics Research Notices, 2004 (2004), 361-387.doi: 10.1155/S1073792804205050. |
[10] |
G. Contreras, J. Delgado and R. Iturriaga, Lagrangian flows: The dynamics of globally minimizing orbits-II, Bol. Soc. Brasil. Mat., 28 (1997), 155-196.doi: 10.1007/BF01233390. |
[11] |
M. J. Dias Carneiro, On minimizing measures of the action of autonomous Lagrangians, Nonlinearity, 8 (1995), 1077-1085.doi: 10.1088/0951-7715/8/6/011. |
[12] |
M. J. Dias Carneiro and A. Lopes, On the minimal action function of autonomous lagrangians associated to magnetic fields, Annales de l'I. H. P., 16 (1999), 667-690.doi: 10.1016/S0294-1449(00)88183-4. |
[13] |
A. Fathi and A. Siconolf, Existence of $C^{1}$ critical sub-solutions of the Hamilton-Jacobi equation, Invent. Math., 155 (2004), 363-388.doi: 10.1007/s00222-003-0323-6. |
[14] |
A. Fathi, Weak KAM Theorem and Lagrangian Dynamics Preliminary Version Number 10, 2008. |
[15] |
A. Fathi, A. Figalli and L. Rifford, On the Hausdorff dimension of the Mather quotient, Comm. Pure Appl. Math., 62 (2009), 445-500.doi: 10.1002/cpa.20250. |
[16] |
A. Fathi, A. Giuliani and A. Sorrentino, Uniqueness of Invariant Lagrangian Graphs in a Homology or a Cohomology Class, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8 (2009), 659-680. |
[17] |
M. Herman, Inégalités "a priori" pour des tores lagrangiens invariants par des difféomorphismes symplectiques, Inst. Hautes Études Sci. Publ. Math., 70 (1989), 47-101. |
[18] |
R. Mañé, Generic properties and problems of minimizing measure of Lagrangian dynamical systems, Nonlinearity, 9 (1996), 273-310.doi: 10.1088/0951-7715/9/2/002. |
[19] |
R. Mañé, Global Variational Methods in Conservative Dynamics, IMPA, 1993. |
[20] |
D. Massart, On Aubry sets and Mather's action functional, Israel J. Math., 134 (2003), 157-171.doi: 10.1007/BF02787406. |
[21] |
D. Massart, Vertices of Mather's Beta function, II, Ergodic Theory Dynam. Systems, 29 (2009), 1289-1307.doi: 10.1017/S0143385708000631. |
[22] |
D. Massart, Aubry sets vs Mather sets in two degrees of freedom, Cal. Var. Partial Diff. Eqns, 42 (2011), 429-460.doi: 10.1007/s00526-011-0393-z. |
[23] |
D. Massart, Stable norm of surfaces: Local structure of the unit ball at rational directions, Geom. Funct. Anal., 7 (1997), 996-1010.doi: 10.1007/s000390050034. |
[24] |
D. Massart and A. Sorrentino, Differentiability of Mather's average action and integrability on closed surfaces, Nonlinearity, 24 (2011), 1777-1793.doi: 10.1088/0951-7715/24/6/005. |
[25] |
J. N. Mather, Action minimizing invariant measures for positive definite Lagrangian Systems, Math. Zeitschrift, 207 (1991), 169-207.doi: 10.1007/BF02571383. |
[26] |
J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley Publ. Co., Menlo Park, CA, 1984. |
[27] |
G. Paternain, L. Polterovich and K. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Mosc. Math. J., 3 (2003), 593-619. |
[28] |
A. Sorrentino, On the integrability of Tonelli Hamiltonians, Trans. Amer. Math. Soc., 363 (2011), 5071-5089.doi: 10.1090/S0002-9947-2011-05492-9. |