March  2014, 6(1): 67-98. doi: 10.3934/jgm.2014.6.67

Tensor products of Dirac structures and interconnection in Lagrangian mechanics

1. 

Department of Mathematics, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom

2. 

Applied Mechanics and Aerospace Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555

Received  October 2013 Revised  February 2014 Published  April 2014

Many mechanical systems are large and complex, despite being composed of simple subsystems. In order to understand such large systems it is natural to tear the system into these subsystems. Conversely we must understand how to invert this tearing procedure. In other words, we must understand interconnection of subsystems. Such an understanding has been already shown in the context of Hamiltonian systems on vector spaces via the port-Hamiltonian systems program, in which an interconnection may be achieved through the identification of shared variables, whereupon the notion of composition of Dirac structures allows one to interconnect two systems. In this paper, we seek to extend the program of the port-Hamiltonian systems on vector spaces to the case of Lagrangian systems on manifolds and also extend the notion of composition of Dirac structures appropriately. In particular, we will interconnect Lagrange-Dirac systems by modifying the respective Dirac structures of the involved subsystems. We define the interconnection of Dirac structures via an interaction Dirac structure and a tensor product of Dirac structures. We will show how the dynamics of the interconnected system is formulated as a function of the subsystems, and we will elucidate the associated variational principles. We will then illustrate how this theory extends the theory of port-Hamiltonian systems and the notion of composition of Dirac structures to manifolds with couplings which do not require the identification of shared variables. Lastly, we will show some examples: a mass-spring mechanical systems, an electric circuit, and a nonholonomic mechanical system.
Citation: Henry O. Jacobs, Hiroaki Yoshimura. Tensor products of Dirac structures and interconnection in Lagrangian mechanics. Journal of Geometric Mechanics, 2014, 6 (1) : 67-98. doi: 10.3934/jgm.2014.6.67
References:
[1]

E. Afshari, H. S. Bhat, A. Hajimiri and J. E. Marsden, Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines,, Journal of Applied Physics, 99 (2006).  doi: 10.1063/1.2174126.  Google Scholar

[2]

B. M. Maschke and A. J. van der Schaft, Hamiltonian formulation of distributed-parameter systems with boundary energy flow,, Journal of Geometry and Physics, 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[3]

C. Batlle, I. Massana and E. Simo, Representation of a general composition of dirac structures,, In Decision and Control and European Control Conference (CDC-ECC), (2011), 5199.  doi: 10.1109/CDC.2011.6160588.  Google Scholar

[4]

G. Blankenstein, Implicit Hamiltonian Systems: Symmetry and Interconnection,, PhD thesis, (2000).   Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer Verlag, (2003).  doi: 10.1007/b97376.  Google Scholar

[6]

A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear LC circuits,, In Proc. Sympos. Pure Math, (1999), 103.   Google Scholar

[7]

N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups: Introduction and structure preserving properties,, Foundations of Computational Mathematics, 9 (2009), 197.  doi: 10.1007/s10208-008-9030-4.  Google Scholar

[8]

R. K. Brayton, Nonlinear reciprocal networks, In Mathematical Aspects of Electrical Network Analysis, H.S. Wilf and F. Harary (eds)., SIAM - AMS Proceedings, (1971), 1.   Google Scholar

[9]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian Reduction by Stages,, Memoirs of the American Mathematical Society. American Mathematical Society, (2001).  doi: 10.1090/memo/0722.  Google Scholar

[10]

J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures,, Automatica, 43 (2007), 212.  doi: 10.1016/j.automatica.2006.08.014.  Google Scholar

[11]

D. A. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. A. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems,, ESAIM: Control, 8 (2002), 393.  doi: 10.1051/cocv:2002045.  Google Scholar

[12]

T. J. Courant, Dirac manifolds,, Transactions of the American Mathematical Society, 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[13]

T. J. Courant and A. Weinstein, Beyond Poisson structures,, In Action Hamiltoniennes de groupes. Troisième théoréme de Lie (Lyon 1986), (1986), 39.   Google Scholar

[14]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Mathematics, 2 (1950), 129.  doi: 10.4153/CJM-1950-012-1.  Google Scholar

[15]

I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations,, (Nonlinear Science: Theory and Applications). Wiley & Sons Ltd., (1993).   Google Scholar

[16]

J. Dufour and A. Wade, On the local structure of Dirac manifolds,, Compos. Math., 144 (2008), 774.  doi: 10.1112/S0010437X07003272.  Google Scholar

[17]

V. Duindam, Port-based Modelling and Control for Efficient Bipedal Walking Robots,, PhD thesis, (2006).   Google Scholar

[18]

V. Duindam, A. Macchelli, S. Stramigioli and H. Bruyninckx, editors., Modelling and Control of Complex Physical Systems,, Springer, (2009).  doi: 10.1007/978-3-642-03196-0.  Google Scholar

[19]

R. Featherstone, Robot Dynamics Algorithms,, Kluwer Academic, (1987).   Google Scholar

[20]

G. Golo, V. Talasila, A. van der Schaft and B. Maschke, Hamiltonian discretization of boundary control systems,, Automatica, 40 (2004), 757.  doi: 10.1016/j.automatica.2003.12.017.  Google Scholar

[21]

M. Gualtieri, Generalized complex geometry,, Ann. of Math. (2), 174 (2011), 75.  doi: 10.4007/annals.2011.174.1.3.  Google Scholar

[22]

H. O. Jacobs and J. Vankerschaver, Fluid-structure interaction in the Lagrange-Poincaré formalism,, arXiv:1212.1144 [math.DS], (2013).   Google Scholar

[23]

H. O. Jacobs and H. Yoshimura, Interconnection and composition of Dirac structures for Lagrange-Dirac systems,, In Decision and Control and European Control Conference (CDC-ECC), (2011), 928.  doi: 10.1109/CDC.2011.6160480.  Google Scholar

[24]

H. O. Jacobs, H. Yoshimura and J. E. Marsden, Interconnection of Lagrange-Dirac dynamical systems for electric circuits,, AIP Conference Proceedings, 1281 (2010), 566.  doi: 10.1063/1.3498539.  Google Scholar

[25]

G. Kron, Diakoptics: The Piecewise Solution of Large-Scale Systems,, McDonald, (1963).   Google Scholar

[26]

M. Leok and T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics,, Foundations of Computational Mathematics, 11 (2011), 529.  doi: 10.1007/s10208-011-9096-2.  Google Scholar

[27]

R. G. Littlejohn, Variational principles of guiding centre motion,, Journal of Plasma Physics, 29 (1983), 111.  doi: 10.1017/S002237780000060X.  Google Scholar

[28]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, A basic exposition of classical mechanical systems. Second edition. Texts in Applied Mathematics, (1999).   Google Scholar

[29]

J. Merker, On the geometric structure of Hamiltonian systems with ports,, Journal of Nonlinear Science, 19 (2009), 717.  doi: 10.1007/s00332-009-9052-3.  Google Scholar

[30]

R. Ortega, J. A. L. Perez, P. J. Nicklasson and H. J. Sira-Ramirez, Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical, and Electromechanical Applications,, Communications and Control Engineering. Springer-Verlag, (1998).   Google Scholar

[31]

R. Ortega, A. J. van der Schaft, B. M. Maschke and G. Escobar, Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems,, Automatica, 38 (2002), 585.  doi: 10.1016/S0005-1098(01)00278-3.  Google Scholar

[32]

H. M. Paynter, Analysis and Design of Engineering Systems,, MIT Press, (1961).   Google Scholar

[33]

V. Talasila, J. Clemente-Gallardo and A. J. van der Schaft, Discrete port-Hamiltonian systems,, Systems and Control Letters, 55 (2006), 478.  doi: 10.1016/j.sysconle.2005.10.001.  Google Scholar

[34]

W. M. Tulczyjew, The Legendre transformation,, Annales de l'Institute Henri Poincaré, 27 (1977), 101.   Google Scholar

[35]

A. J. van der Schaft, Port-Hamiltonian systems: An introductory survey,, In Proceedings of the International Conference of Mathematics, (1996), 1.   Google Scholar

[36]

A. J. van der Schaft and B. M. Maschke, The Hamiltonian formulation of energy conserving physical systems with external ports,, Archiv für Elektronik und Übertragungstechnik, 49 (1995), 362.   Google Scholar

[37]

J. Vankerschaver, H. Yoshimura and M. Leok, The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories,, Journal of Mathematical Physics, 53 (2012).  doi: 10.1063/1.4731481.  Google Scholar

[38]

A. Weinstein, Symplectic categories,, Port. Math., 67 (2010), 261.  doi: 10.4171/PM/1866.  Google Scholar

[39]

J. L. Wyatt and L. O. Chua, A theory of nonenergic $n$-ports,, Circuit Theory and Applications, 5 (1977), 181.   Google Scholar

[40]

H. Yoshimura, Dynamics of Flexible Multibody Systems,, PhD thesis, (1995).   Google Scholar

[41]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics part I: Implicit Lagrangian systems,, Journal of Geometry and Physics, 57 (2006), 133.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

[42]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics part II: Variational structures,, Journal of Geometry and Physics, 57 (2006), 209.  doi: 10.1016/j.geomphys.2006.02.012.  Google Scholar

[43]

H. Yoshimura and J. E. Marsden, Dirac structures and implicit Lagrangian systems in electric networks,, In Proceedings of the 17th International Symposium on the Mathematical Theory of Networks and Systems, (2006), 1.   Google Scholar

[44]

H. Yoshimura and J. E. Marsden, Dirac Structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systems,, In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, (2006), 233.  doi: 10.1007/978-3-540-73890-9_18.  Google Scholar

[45]

H. Yoshimura and J. E. Marsden, Reduction of Dirac structures and the Hamilton-Pontryagin principle,, Reports on Mathematical Physics, 60 (2007), 381.  doi: 10.1016/S0034-4877(08)00004-9.  Google Scholar

[46]

H. Yoshimura and J. E. Marsden, Dirac cotangent bundle reduction,, Journal of Geometric Mechanics, 1 (2009), 87.  doi: 10.3934/jgm.2009.1.87.  Google Scholar

[47]

H. Yoshimura, H. O. Jacobs, and J. E. Marsden, Interconnection of Dirac structures in Lagrange-Dirac dynamical systems,, In Proceedings of the 20th International Symposium on the Mathematical Theory of Networks and Systems, (2010).   Google Scholar

show all references

References:
[1]

E. Afshari, H. S. Bhat, A. Hajimiri and J. E. Marsden, Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines,, Journal of Applied Physics, 99 (2006).  doi: 10.1063/1.2174126.  Google Scholar

[2]

B. M. Maschke and A. J. van der Schaft, Hamiltonian formulation of distributed-parameter systems with boundary energy flow,, Journal of Geometry and Physics, 42 (2002), 166.  doi: 10.1016/S0393-0440(01)00083-3.  Google Scholar

[3]

C. Batlle, I. Massana and E. Simo, Representation of a general composition of dirac structures,, In Decision and Control and European Control Conference (CDC-ECC), (2011), 5199.  doi: 10.1109/CDC.2011.6160588.  Google Scholar

[4]

G. Blankenstein, Implicit Hamiltonian Systems: Symmetry and Interconnection,, PhD thesis, (2000).   Google Scholar

[5]

A. M. Bloch, Nonholonomic Mechanics and Control, volume 24 of Interdisciplinary Applied Mathematics,, Springer Verlag, (2003).  doi: 10.1007/b97376.  Google Scholar

[6]

A. M. Bloch and P. E. Crouch, Representations of Dirac structures on vector spaces and nonlinear LC circuits,, In Proc. Sympos. Pure Math, (1999), 103.   Google Scholar

[7]

N. Bou-Rabee and J. E. Marsden, Hamilton-Pontryagin integrators on Lie groups: Introduction and structure preserving properties,, Foundations of Computational Mathematics, 9 (2009), 197.  doi: 10.1007/s10208-008-9030-4.  Google Scholar

[8]

R. K. Brayton, Nonlinear reciprocal networks, In Mathematical Aspects of Electrical Network Analysis, H.S. Wilf and F. Harary (eds)., SIAM - AMS Proceedings, (1971), 1.   Google Scholar

[9]

H. Cendra, J. E. Marsden and T. S. Ratiu, Lagrangian Reduction by Stages,, Memoirs of the American Mathematical Society. American Mathematical Society, (2001).  doi: 10.1090/memo/0722.  Google Scholar

[10]

J. Cervera, A. J. van der Schaft and A. Baños, Interconnection of port-Hamiltonian systems and composition of Dirac structures,, Automatica, 43 (2007), 212.  doi: 10.1016/j.automatica.2006.08.014.  Google Scholar

[11]

D. A. Chang, A. M. Bloch, N. E. Leonard, J. E. Marsden and C. A. Woolsey, The equivalence of controlled Lagrangian and controlled Hamiltonian systems,, ESAIM: Control, 8 (2002), 393.  doi: 10.1051/cocv:2002045.  Google Scholar

[12]

T. J. Courant, Dirac manifolds,, Transactions of the American Mathematical Society, 319 (1990), 631.  doi: 10.1090/S0002-9947-1990-0998124-1.  Google Scholar

[13]

T. J. Courant and A. Weinstein, Beyond Poisson structures,, In Action Hamiltoniennes de groupes. Troisième théoréme de Lie (Lyon 1986), (1986), 39.   Google Scholar

[14]

P. A. M. Dirac, Generalized Hamiltonian dynamics,, Canadian J. Mathematics, 2 (1950), 129.  doi: 10.4153/CJM-1950-012-1.  Google Scholar

[15]

I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations,, (Nonlinear Science: Theory and Applications). Wiley & Sons Ltd., (1993).   Google Scholar

[16]

J. Dufour and A. Wade, On the local structure of Dirac manifolds,, Compos. Math., 144 (2008), 774.  doi: 10.1112/S0010437X07003272.  Google Scholar

[17]

V. Duindam, Port-based Modelling and Control for Efficient Bipedal Walking Robots,, PhD thesis, (2006).   Google Scholar

[18]

V. Duindam, A. Macchelli, S. Stramigioli and H. Bruyninckx, editors., Modelling and Control of Complex Physical Systems,, Springer, (2009).  doi: 10.1007/978-3-642-03196-0.  Google Scholar

[19]

R. Featherstone, Robot Dynamics Algorithms,, Kluwer Academic, (1987).   Google Scholar

[20]

G. Golo, V. Talasila, A. van der Schaft and B. Maschke, Hamiltonian discretization of boundary control systems,, Automatica, 40 (2004), 757.  doi: 10.1016/j.automatica.2003.12.017.  Google Scholar

[21]

M. Gualtieri, Generalized complex geometry,, Ann. of Math. (2), 174 (2011), 75.  doi: 10.4007/annals.2011.174.1.3.  Google Scholar

[22]

H. O. Jacobs and J. Vankerschaver, Fluid-structure interaction in the Lagrange-Poincaré formalism,, arXiv:1212.1144 [math.DS], (2013).   Google Scholar

[23]

H. O. Jacobs and H. Yoshimura, Interconnection and composition of Dirac structures for Lagrange-Dirac systems,, In Decision and Control and European Control Conference (CDC-ECC), (2011), 928.  doi: 10.1109/CDC.2011.6160480.  Google Scholar

[24]

H. O. Jacobs, H. Yoshimura and J. E. Marsden, Interconnection of Lagrange-Dirac dynamical systems for electric circuits,, AIP Conference Proceedings, 1281 (2010), 566.  doi: 10.1063/1.3498539.  Google Scholar

[25]

G. Kron, Diakoptics: The Piecewise Solution of Large-Scale Systems,, McDonald, (1963).   Google Scholar

[26]

M. Leok and T. Ohsawa, Variational and geometric structures of discrete Dirac mechanics,, Foundations of Computational Mathematics, 11 (2011), 529.  doi: 10.1007/s10208-011-9096-2.  Google Scholar

[27]

R. G. Littlejohn, Variational principles of guiding centre motion,, Journal of Plasma Physics, 29 (1983), 111.  doi: 10.1017/S002237780000060X.  Google Scholar

[28]

J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry,, A basic exposition of classical mechanical systems. Second edition. Texts in Applied Mathematics, (1999).   Google Scholar

[29]

J. Merker, On the geometric structure of Hamiltonian systems with ports,, Journal of Nonlinear Science, 19 (2009), 717.  doi: 10.1007/s00332-009-9052-3.  Google Scholar

[30]

R. Ortega, J. A. L. Perez, P. J. Nicklasson and H. J. Sira-Ramirez, Passivity-based Control of Euler-Lagrange Systems: Mechanical, Electrical, and Electromechanical Applications,, Communications and Control Engineering. Springer-Verlag, (1998).   Google Scholar

[31]

R. Ortega, A. J. van der Schaft, B. M. Maschke and G. Escobar, Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems,, Automatica, 38 (2002), 585.  doi: 10.1016/S0005-1098(01)00278-3.  Google Scholar

[32]

H. M. Paynter, Analysis and Design of Engineering Systems,, MIT Press, (1961).   Google Scholar

[33]

V. Talasila, J. Clemente-Gallardo and A. J. van der Schaft, Discrete port-Hamiltonian systems,, Systems and Control Letters, 55 (2006), 478.  doi: 10.1016/j.sysconle.2005.10.001.  Google Scholar

[34]

W. M. Tulczyjew, The Legendre transformation,, Annales de l'Institute Henri Poincaré, 27 (1977), 101.   Google Scholar

[35]

A. J. van der Schaft, Port-Hamiltonian systems: An introductory survey,, In Proceedings of the International Conference of Mathematics, (1996), 1.   Google Scholar

[36]

A. J. van der Schaft and B. M. Maschke, The Hamiltonian formulation of energy conserving physical systems with external ports,, Archiv für Elektronik und Übertragungstechnik, 49 (1995), 362.   Google Scholar

[37]

J. Vankerschaver, H. Yoshimura and M. Leok, The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories,, Journal of Mathematical Physics, 53 (2012).  doi: 10.1063/1.4731481.  Google Scholar

[38]

A. Weinstein, Symplectic categories,, Port. Math., 67 (2010), 261.  doi: 10.4171/PM/1866.  Google Scholar

[39]

J. L. Wyatt and L. O. Chua, A theory of nonenergic $n$-ports,, Circuit Theory and Applications, 5 (1977), 181.   Google Scholar

[40]

H. Yoshimura, Dynamics of Flexible Multibody Systems,, PhD thesis, (1995).   Google Scholar

[41]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics part I: Implicit Lagrangian systems,, Journal of Geometry and Physics, 57 (2006), 133.  doi: 10.1016/j.geomphys.2006.02.009.  Google Scholar

[42]

H. Yoshimura and J. E. Marsden, Dirac structures in Lagrangian mechanics part II: Variational structures,, Journal of Geometry and Physics, 57 (2006), 209.  doi: 10.1016/j.geomphys.2006.02.012.  Google Scholar

[43]

H. Yoshimura and J. E. Marsden, Dirac structures and implicit Lagrangian systems in electric networks,, In Proceedings of the 17th International Symposium on the Mathematical Theory of Networks and Systems, (2006), 1.   Google Scholar

[44]

H. Yoshimura and J. E. Marsden, Dirac Structures and the Legendre transformation for implicit Lagrangian and Hamiltonian systems,, In Lagrangian and Hamiltonian Methods for Nonlinear Control 2006, (2006), 233.  doi: 10.1007/978-3-540-73890-9_18.  Google Scholar

[45]

H. Yoshimura and J. E. Marsden, Reduction of Dirac structures and the Hamilton-Pontryagin principle,, Reports on Mathematical Physics, 60 (2007), 381.  doi: 10.1016/S0034-4877(08)00004-9.  Google Scholar

[46]

H. Yoshimura and J. E. Marsden, Dirac cotangent bundle reduction,, Journal of Geometric Mechanics, 1 (2009), 87.  doi: 10.3934/jgm.2009.1.87.  Google Scholar

[47]

H. Yoshimura, H. O. Jacobs, and J. E. Marsden, Interconnection of Dirac structures in Lagrange-Dirac dynamical systems,, In Proceedings of the 20th International Symposium on the Mathematical Theory of Networks and Systems, (2010).   Google Scholar

[1]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[8]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[9]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[10]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 0.649

Metrics

  • PDF downloads (47)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]