June  2015, 7(2): 125-150. doi: 10.3934/jgm.2015.7.125

Completeness properties of Sobolev metrics on the space of curves

1. 

Department of Mathematics, Brunel Unversity London, Uxbridge UB8 3PH, United Kingdom

Received  July 2014 Revised  March 2015 Published  June 2015

We study completeness properties of Sobolev metrics on the space of immersed curves and on the shape space of unparametrized curves. We show that Sobolev metrics of order $n\geq 2$ are metrically complete on the space $\mathcal{I}^n(S^1,\mathbb{R}^d)$ of Sobolev immersions of the same regularity and that any two curves in the same connected component can be joined by a minimizing geodesic. These results then imply that the shape space of unparametrized curves has the structure of a complete length space.
Citation: Martins Bruveris. Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 2015, 7 (2) : 125-150. doi: 10.3934/jgm.2015.7.125
References:
[1]

R. A. Adams, Sobolev Spaces,, 2nd edition, (2003). Google Scholar

[2]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Dedicated to the memory of Branko Najman, 35(55) (2000), 161. Google Scholar

[3]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics,, J. Geom. Mech., 4 (2012), 365. Google Scholar

[4]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation,, Ann. Global Anal. Geom., 41 (2012), 461. doi: 10.1007/s10455-011-9294-9. Google Scholar

[5]

M. Bauer, M. Bruveris, S. Marsland and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves,, Differential Geom. Appl., 34 (2014), 139. doi: 10.1016/j.difgeo.2014.04.008. Google Scholar

[6]

M. Bauer, M. Bruveris and P. Michor, $R$-transforms for Sobolev $H^2$-metrics on spaces of plane curves,, Geom. Imaging Comput., 1 (2014), 1. doi: 10.4310/GIC.2014.v1.n1.a1. Google Scholar

[7]

M. Bauer, M. Bruveris and P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups,, Journal of Mathematical Imaging and Vision, 50 (2014), 60. doi: 10.1007/s10851-013-0490-z. Google Scholar

[8]

M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality,, Differential Geom. Appl., 39 (2015), 166. doi: 10.1016/j.difgeo.2014.12.008. Google Scholar

[9]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, J. Geom. Mech., 3 (2011), 389. Google Scholar

[10]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, J. Differential Geom., 94 (2013), 187. Google Scholar

[11]

M. Bruveris, P. W. Michor and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves,, Forum Math. Sigma, 2 (2014). doi: 10.1017/fms.2014.19. Google Scholar

[12]

M. Bruveris and F.-X. Vialard, On completeness of groups of diffeomorphisms,, preprint, (2014). Google Scholar

[13]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry,, Graduate Studies in Mathematics, (2001). doi: 10.1090/gsm/033. Google Scholar

[14]

A. Burtscher, Length structures on manifolds with continuous Riemannian metrics,, preprint, (2013). Google Scholar

[15]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391. doi: 10.1016/0926-2245(91)90015-2. Google Scholar

[16]

G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven and O. Faugeras, Generalized gradients: Priors on minimization flows,, Int. J. Comput. Vision, 73 (2007), 325. doi: 10.1007/s11263-006-9966-2. Google Scholar

[17]

D. G. Ebin, The manifold of Riemannian metrics,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 11. Google Scholar

[18]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102. doi: 10.2307/1970699. Google Scholar

[19]

J. Eells, Jr., A setting for global analysis,, Bull. Amer. Math. Soc., 72 (1966), 751. doi: 10.1090/S0002-9904-1966-11558-6. Google Scholar

[20]

H. I. Elíasson, Condition (C) and geodesics on Sobolev manifolds,, Bull. Amer. Math. Soc., 77 (1971), 1002. doi: 10.1090/S0002-9904-1971-12836-7. Google Scholar

[21]

F. Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 55. Google Scholar

[22]

R. S. Hamilton, The inverse function theorem of Nash and Moser,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65. doi: 10.1090/S0273-0979-1982-15004-2. Google Scholar

[23]

D. Huet, Décomposition Spectrale et Opérateurs,, Le Mathématicien, (1976). Google Scholar

[24]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013). doi: 10.1090/S0065-9266-2013-00676-4. Google Scholar

[25]

G. S. Jones, Fundamental inequalities for discrete and discontinuous functional equations,, J. Soc. Indust. Appl. Math., 12 (1964), 43. doi: 10.1137/0112004. Google Scholar

[26]

T. Kappeler, E. Loubet and P. Topalov, Riemannian exponential maps of the diffeomorphism groups of $\mathbbT^2$,, Asian J. Math., 12 (2008), 391. doi: 10.4310/AJM.2008.v12.n3.a7. Google Scholar

[27]

W. P. A. Klingenberg, Riemannian Geometry,, 2nd edition, (1995). doi: 10.1515/9783110905120. Google Scholar

[28]

H. Kodama and P. W. Michor, The homotopy type of the space of degree 0-immersed plane curves,, Rev. Mat. Complut., 19 (2006), 227. doi: 10.5209/rev_REMA.2006.v19.n1.16660. Google Scholar

[29]

S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857. doi: 10.1063/1.532690. Google Scholar

[30]

A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis,, Mathematical Surveys and Monographs, (1997). doi: 10.1090/surv/053. Google Scholar

[31]

S. Lang, Fundamentals of Differential Geometry,, Graduate Texts in Mathematics, (1999). doi: 10.1007/978-1-4612-0541-8. Google Scholar

[32]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423. doi: 10.4171/IFB/196. Google Scholar

[33]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217. Google Scholar

[34]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1. doi: 10.4171/JEMS/37. Google Scholar

[35]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74. doi: 10.1016/j.acha.2006.07.004. Google Scholar

[36]

G. Nardi, G. Peyré and F.-X. Vialard, Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics,, Technical report, (2014). Google Scholar

[37]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions,, U.S. Department of Commerce National Institute of Standards and Technology, (2010). Google Scholar

[38]

B. G. Pachpatte, Inequalities for Differential and Integral Equations,, Mathematics in Science and Engineering, (1998). Google Scholar

[39]

R. S. Palais, Foundations of Global Non-Linear Analysis,, W. A. Benjamin, (1968). Google Scholar

[40]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis,, 2nd edition, (1980). Google Scholar

[41]

M. Rumpf and B. Wirth, Variational time discretization of geodesic calculus,, IMA J. Numer. Anal., (2014). doi: 10.1093/imanum/dru027. Google Scholar

[42]

J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123. doi: 10.1090/S0033-569X-07-01084-4. Google Scholar

[43]

J. Shah, An $H^2$ Riemannian metric on the space of planar curves modulo similitudes,, Adv. in Appl. Math., 51 (2013), 483. doi: 10.1016/j.aam.2013.06.003. Google Scholar

[44]

N. K. Smolentsev, Diffeomorphism groups of compact manifolds,, Sovrem. Mat. Prilozh., (2006), 3. doi: 10.1007/s10958-007-0471-0. Google Scholar

[45]

A. Srivastava, E. Klassen, S. H. Joshi and I. H. Jermyn, Shape analysis of elastic curves in Euclidean spaces,, IEEE T. Pattern Anal., 33 (2011), 1415. doi: 10.1109/TPAMI.2010.184. Google Scholar

[46]

G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, in Variational, (3752), 109. doi: 10.1007/11567646_10. Google Scholar

[47]

K. Yosida, Functional Analysis,, Sixth edition, (1980). Google Scholar

[48]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25. doi: 10.4171/RLM/506. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, 2nd edition, (2003). Google Scholar

[2]

H. Amann, Compact embeddings of vector-valued Sobolev and Besov spaces,, Dedicated to the memory of Branko Najman, 35(55) (2000), 161. Google Scholar

[3]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics,, J. Geom. Mech., 4 (2012), 365. Google Scholar

[4]

M. Bauer, M. Bruveris, P. Harms and P. W. Michor, Vanishing geodesic distance for the Riemannian metric with geodesic equation the KdV-equation,, Ann. Global Anal. Geom., 41 (2012), 461. doi: 10.1007/s10455-011-9294-9. Google Scholar

[5]

M. Bauer, M. Bruveris, S. Marsland and P. W. Michor, Constructing reparameterization invariant metrics on spaces of plane curves,, Differential Geom. Appl., 34 (2014), 139. doi: 10.1016/j.difgeo.2014.04.008. Google Scholar

[6]

M. Bauer, M. Bruveris and P. Michor, $R$-transforms for Sobolev $H^2$-metrics on spaces of plane curves,, Geom. Imaging Comput., 1 (2014), 1. doi: 10.4310/GIC.2014.v1.n1.a1. Google Scholar

[7]

M. Bauer, M. Bruveris and P. Michor, Overview of the geometries of shape spaces and diffeomorphism groups,, Journal of Mathematical Imaging and Vision, 50 (2014), 60. doi: 10.1007/s10851-013-0490-z. Google Scholar

[8]

M. Bauer and P. Harms, Metrics on spaces of immersions where horizontality equals normality,, Differential Geom. Appl., 39 (2015), 166. doi: 10.1016/j.difgeo.2014.12.008. Google Scholar

[9]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on shape space of surfaces,, J. Geom. Mech., 3 (2011), 389. Google Scholar

[10]

M. Bauer, P. Harms and P. W. Michor, Sobolev metrics on the manifold of all Riemannian metrics,, J. Differential Geom., 94 (2013), 187. Google Scholar

[11]

M. Bruveris, P. W. Michor and D. Mumford, Geodesic completeness for Sobolev metrics on the space of immersed plane curves,, Forum Math. Sigma, 2 (2014). doi: 10.1017/fms.2014.19. Google Scholar

[12]

M. Bruveris and F.-X. Vialard, On completeness of groups of diffeomorphisms,, preprint, (2014). Google Scholar

[13]

D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry,, Graduate Studies in Mathematics, (2001). doi: 10.1090/gsm/033. Google Scholar

[14]

A. Burtscher, Length structures on manifolds with continuous Riemannian metrics,, preprint, (2013). Google Scholar

[15]

V. Cervera, F. Mascaró and P. W. Michor, The action of the diffeomorphism group on the space of immersions,, Differential Geom. Appl., 1 (1991), 391. doi: 10.1016/0926-2245(91)90015-2. Google Scholar

[16]

G. Charpiat, P. Maurel, J.-P. Pons, R. Keriven and O. Faugeras, Generalized gradients: Priors on minimization flows,, Int. J. Comput. Vision, 73 (2007), 325. doi: 10.1007/s11263-006-9966-2. Google Scholar

[17]

D. G. Ebin, The manifold of Riemannian metrics,, in Global Analysis (Proc. Sympos. Pure Math., (1968), 11. Google Scholar

[18]

D. G. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. of Math. (2), 92 (1970), 102. doi: 10.2307/1970699. Google Scholar

[19]

J. Eells, Jr., A setting for global analysis,, Bull. Amer. Math. Soc., 72 (1966), 751. doi: 10.1090/S0002-9904-1966-11558-6. Google Scholar

[20]

H. I. Elíasson, Condition (C) and geodesics on Sobolev manifolds,, Bull. Amer. Math. Soc., 77 (1971), 1002. doi: 10.1090/S0002-9904-1971-12836-7. Google Scholar

[21]

F. Gay-Balmaz, Well-posedness of higher dimensional Camassa-Holm equations,, Bull. Transilv. Univ. Braşov Ser. III, 2 (2009), 55. Google Scholar

[22]

R. S. Hamilton, The inverse function theorem of Nash and Moser,, Bull. Amer. Math. Soc. (N.S.), 7 (1982), 65. doi: 10.1090/S0273-0979-1982-15004-2. Google Scholar

[23]

D. Huet, Décomposition Spectrale et Opérateurs,, Le Mathématicien, (1976). Google Scholar

[24]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013). doi: 10.1090/S0065-9266-2013-00676-4. Google Scholar

[25]

G. S. Jones, Fundamental inequalities for discrete and discontinuous functional equations,, J. Soc. Indust. Appl. Math., 12 (1964), 43. doi: 10.1137/0112004. Google Scholar

[26]

T. Kappeler, E. Loubet and P. Topalov, Riemannian exponential maps of the diffeomorphism groups of $\mathbbT^2$,, Asian J. Math., 12 (2008), 391. doi: 10.4310/AJM.2008.v12.n3.a7. Google Scholar

[27]

W. P. A. Klingenberg, Riemannian Geometry,, 2nd edition, (1995). doi: 10.1515/9783110905120. Google Scholar

[28]

H. Kodama and P. W. Michor, The homotopy type of the space of degree 0-immersed plane curves,, Rev. Mat. Complut., 19 (2006), 227. doi: 10.5209/rev_REMA.2006.v19.n1.16660. Google Scholar

[29]

S. Kouranbaeva, The Camassa-Holm equation as a geodesic flow on the diffeomorphism group,, J. Math. Phys., 40 (1999), 857. doi: 10.1063/1.532690. Google Scholar

[30]

A. Kriegl and P. W. Michor, The Convenient Setting of Global Analysis,, Mathematical Surveys and Monographs, (1997). doi: 10.1090/surv/053. Google Scholar

[31]

S. Lang, Fundamentals of Differential Geometry,, Graduate Texts in Mathematics, (1999). doi: 10.1007/978-1-4612-0541-8. Google Scholar

[32]

A. Mennucci, A. Yezzi and G. Sundaramoorthi, Properties of Sobolev-type metrics in the space of curves,, Interfaces Free Bound., 10 (2008), 423. doi: 10.4171/IFB/196. Google Scholar

[33]

P. W. Michor and D. Mumford, Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms,, Doc. Math., 10 (2005), 217. Google Scholar

[34]

P. W. Michor and D. Mumford, Riemannian geometries on spaces of plane curves,, J. Eur. Math. Soc. (JEMS), 8 (2006), 1. doi: 10.4171/JEMS/37. Google Scholar

[35]

P. W. Michor and D. Mumford, An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach,, Appl. Comput. Harmon. Anal., 23 (2007), 74. doi: 10.1016/j.acha.2006.07.004. Google Scholar

[36]

G. Nardi, G. Peyré and F.-X. Vialard, Geodesics on Shape Spaces with Bounded Variation and Sobolev Metrics,, Technical report, (2014). Google Scholar

[37]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark (eds.), NIST Handbook of Mathematical Functions,, U.S. Department of Commerce National Institute of Standards and Technology, (2010). Google Scholar

[38]

B. G. Pachpatte, Inequalities for Differential and Integral Equations,, Mathematics in Science and Engineering, (1998). Google Scholar

[39]

R. S. Palais, Foundations of Global Non-Linear Analysis,, W. A. Benjamin, (1968). Google Scholar

[40]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis,, 2nd edition, (1980). Google Scholar

[41]

M. Rumpf and B. Wirth, Variational time discretization of geodesic calculus,, IMA J. Numer. Anal., (2014). doi: 10.1093/imanum/dru027. Google Scholar

[42]

J. Shah, $H^0$-type Riemannian metrics on the space of planar curves,, Quart. Appl. Math., 66 (2008), 123. doi: 10.1090/S0033-569X-07-01084-4. Google Scholar

[43]

J. Shah, An $H^2$ Riemannian metric on the space of planar curves modulo similitudes,, Adv. in Appl. Math., 51 (2013), 483. doi: 10.1016/j.aam.2013.06.003. Google Scholar

[44]

N. K. Smolentsev, Diffeomorphism groups of compact manifolds,, Sovrem. Mat. Prilozh., (2006), 3. doi: 10.1007/s10958-007-0471-0. Google Scholar

[45]

A. Srivastava, E. Klassen, S. H. Joshi and I. H. Jermyn, Shape analysis of elastic curves in Euclidean spaces,, IEEE T. Pattern Anal., 33 (2011), 1415. doi: 10.1109/TPAMI.2010.184. Google Scholar

[46]

G. Sundaramoorthi, A. Yezzi and A. C. Mennucci, Sobolev active contours,, in Variational, (3752), 109. doi: 10.1007/11567646_10. Google Scholar

[47]

K. Yosida, Functional Analysis,, Sixth edition, (1980). Google Scholar

[48]

L. Younes, P. W. Michor, J. Shah and D. Mumford, A metric on shape space with explicit geodesics,, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 19 (2008), 25. doi: 10.4171/RLM/506. Google Scholar

[1]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 2011, 3 (4) : 389-438. doi: 10.3934/jgm.2011.3.389

[2]

Martin Bauer, Philipp Harms, Peter W. Michor. Sobolev metrics on shape space, II: Weighted Sobolev metrics and almost local metrics. Journal of Geometric Mechanics, 2012, 4 (4) : 365-383. doi: 10.3934/jgm.2012.4.365

[3]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[4]

Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71

[5]

Antonio Tribuzio. Perturbations of minimizing movements and curves of maximal slope. Networks & Heterogeneous Media, 2018, 13 (3) : 423-448. doi: 10.3934/nhm.2018019

[6]

Flavia Antonacci, Marco Degiovanni. On the Euler equation for minimal geodesics on Riemannian manifoldshaving discontinuous metrics. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 833-842. doi: 10.3934/dcds.2006.15.833

[7]

Samir Chowdhury, Facundo Mémoli. Explicit geodesics in Gromov-Hausdorff space. Electronic Research Announcements, 2018, 25: 48-59. doi: 10.3934/era.2018.25.006

[8]

Alice Le Brigant. Computing distances and geodesics between manifold-valued curves in the SRV framework. Journal of Geometric Mechanics, 2017, 9 (2) : 131-156. doi: 10.3934/jgm.2017005

[9]

Alice B. Tumpach, Stephen C. Preston. Quotient elastic metrics on the manifold of arc-length parameterized plane curves. Journal of Geometric Mechanics, 2017, 9 (2) : 227-256. doi: 10.3934/jgm.2017010

[10]

Robert J. Martin, Patrizio Neff. Minimal geodesics on GL(n) for left-invariant, right-O(n)-invariant Riemannian metrics. Journal of Geometric Mechanics, 2016, 8 (3) : 323-357. doi: 10.3934/jgm.2016010

[11]

Xifeng Su, Rafael de la Llave. On a remarkable example of F. Almgren and H. Federer in the global theory of minimizing geodesics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7057-7080. doi: 10.3934/dcds.2019295

[12]

Joachim Escher, Boris Kolev. Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle. Journal of Geometric Mechanics, 2014, 6 (3) : 335-372. doi: 10.3934/jgm.2014.6.335

[13]

Valentina Casarino, Paolo Ciatti, Silvia Secco. Product structures and fractional integration along curves in the space. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 619-635. doi: 10.3934/dcdss.2013.6.619

[14]

Ravi Vakil and Aleksey Zinger. A natural smooth compactification of the space of elliptic curves in projective space. Electronic Research Announcements, 2007, 13: 53-59.

[15]

Angela Alberico, Andrea Cianchi, Luboš Pick, Lenka Slavíková. Sharp Sobolev type embeddings on the entire Euclidean space. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2011-2037. doi: 10.3934/cpaa.2018096

[16]

Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165

[17]

Nguyen Thi Bach Kim, Nguyen Canh Nam, Le Quang Thuy. An outcome space algorithm for minimizing the product of two convex functions over a convex set. Journal of Industrial & Management Optimization, 2013, 9 (1) : 243-253. doi: 10.3934/jimo.2013.9.243

[18]

Irena Pawłow, Wojciech M. Zajączkowski. Unique solvability of a nonlinear thermoviscoelasticity system in Sobolev space with a mixed norm. Discrete & Continuous Dynamical Systems - S, 2011, 4 (2) : 441-466. doi: 10.3934/dcdss.2011.4.441

[19]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[20]

M. Nakamura, Tohru Ozawa. The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 215-231. doi: 10.3934/dcds.1999.5.215

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]